Skip to main content

Advertisement

Log in

Study of cavernous underground conduits in Nam La (Northwest Vietnam) by an integrative approach

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This paper presents the result of an investigation of underground conduits, which connect the swallow holes and the resurgence of a blind river in the tropical, highly karstified limestone Nam La catchment in the NW of Vietnam. The Nam La River disappears underground in several swallow holes near the outlet of the catchment. In the rainy season this results in flooding upstream of the sinkholes. A hypothesis is that the Nam La River resurges at a large cavern spring 4.5 km east of the catchment outlet. A multi-thematic study of the possible connections between the swallow holes and the resurgence was carried out to investigate the geological structure, tectonics, cave structure analysis and discharge time series. The existence of the underground conduits was also tested and proven by tracer experiments. On the basis of a lineament analysis the location of the underground conduits were predicted. A remote sensing derived lineament-length density map was used to track routes from the swallow holes to the resurgence, having the shortest length but highest lineament density. This resulted in a plan-view prediction of underground conduits that matches with the cave and fault development. The functioning of the conduits was further explained by analysing flooding records of a nearby doline, which turns out to act as a temporary storage reservoir mitigating flooding of the catchment outlet area.

Résumé

Cet article présente les résultats de l’investigation de conduits souterrains, qui mettent en connexion les pertes et les résurgences d’une rivière souterraine dans le bassin versant de Nam La, dans une région tropicale fortement karstique du NW du Vietnam. La rivière Nam La disparaît dans le sous-sol via plusieurs pertes à proximité de l’exutoire du bassin. Durant la saison des pluies, les pertes se mettent en charge et des inondations apparaissent. Une hypothèse serait que la rivière ressort 4.5 km à l’Est de l’exutoire du bassin, dans une grande caverne. Une étude multi-thématique visant les connexions possibles entre les pertes et les résurgences a été réalisée. Elle comprend l’étude de la structure géologique, la tectonique, l’analyse de la structure karstique et des chroniques de débits. L’existence des conduits souterrains est également testée et prouvée par des essais de traçages. Sur base de l’analyse des linéaments, la localisation des conduits souterrains est prédite. Grâce à la télédétection et une cartographie de la densité et de la longueur des linéaments, on peut deviner le cheminement de l’eau entre les pertes et la résurgence (via le chemin le plus court et la densité de fracturation la plus importante). Il en résulte une vue en plan prédisant la localisation des conduits, qui correspond par ailleurs avec le développement des cavités et des failles. Le fonctionnement des conduits est ensuite expliqué sur base de l’analyse des chroniques de débits enregistrés à proximité d’une doline, qui joue le rôle d’un réservoir temporaire, mitigeant les inondations à la zone de l’exutoire du bassin-versant.

Resumen

Este artículo presenta el resultado de una investigación de conductos subterráneos, los cuales conectan dolinas y la resurgencia de un río ciego en la cuenca tropical Nam La, compuesta por calizas altamente karstificadas, en el noroeste de Vietnam. El Río Nam La desaparece en el subsuelo por medio de varias dolinas cerca de la salida de la cuenca. Durante la estación lluviosa esto resulta en inundaciones aguas arriba de las dolinas. Una hipótesis es que el Río Nam La resurge en un manantial de caverna grande a 4.5 km al oriente de la salida de la cuenca. Se llevó a cabo un estudio multi-temático de las conexiones posibles entre las dolinas y la resurgencia para investigar la estructura geológica, tectónica, análisis estructural de cavernas, y series de tiempo de descarga. Se evalúa y se demuestra también la existencia de conductos subterráneos por medio de experimentos con trazadores. En base a análisis de lineamientos se predice la localización de los conductos subterráneos. Se utiliza un mapa de densidad de longitudes de lineamientos construido a partir de sensores remotos para seguir las rutas de las dolinas a la resurgencia, teniendo longitudes más cortas pero densidad de lineamientos más altas. Esto da por resultado una predicción en vista de planta de conductos subterráneos que se ajustan con el desarrollo de cavernas y fallas. El funcionamiento de los conductos se explica posteriormente mediante el análisis de registro de inundaciones de una dolina cercana la cual actúa como un reservorio de almacenamiento temporal que mitiga inundaciones en el área de salida de la cuenca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bodin J, Razack M, (1999) L’analyse d’images appliquée au traitement automatique de champs de fractures. Propriétés géométriques et lois d’échelles. Bull Soc Géol France 170(4):579–593

    Google Scholar 

  • Bonacci O, (2001) Analysis of the maximum discharge of karst springs. Hydrogeol J 9:328–338

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis forecasting and control. Holden Day, San Francisco, CA, 575 pp

    Google Scholar 

  • Davis WM (1930) Origin of limestone caverns. Geol Soc Am Bull 41:475–628

    Google Scholar 

  • Dinh NQ (2001) Cave database development, Spatial analysis and 3D visualization with GIS, Case study in Son La (Vietnam). Master dissertation, Free University Brussels, 114 pp

  • Dreybrodt W (1992) Dynamics of karstification: a model applied to hydraulic structures in karst terranes. Appl Hydrogeol 1(3):20–32

    Google Scholar 

  • Edet AE, Okereke CS, Teme SC, Esu EO (1998) Application of remote-sensing data to groundwater exploration: a case study of the Cross River State, southeastern Nigeria. Hydrogeol J 6:394–404

    Article  Google Scholar 

  • Eisenlohr L, Király L, Bouzelboudjen M, Rossier Y (1997) Numerical simulation as a toll for checking the interpretation of karst spring hydrographs. J Hydrol 193:306–315

    Article  Google Scholar 

  • Estrela T, Sahuquillo A (1997) Modelling the response of a karstic spring at Arteta Aquifer in Spain. Ground Water 35(1):18–24

    CAS  Google Scholar 

  • Felton GK, Currens JC (1994) Peak flow rate and recession-curve characteristics of a karst spring in the Inner Bluegrass, central Kentucky. J Hydrol 162:99–118

    Article  Google Scholar 

  • Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, London, 601 pp

    Google Scholar 

  • Ford DC (1999) Perspectives in karst hydrogeology and cavern genesis. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Proceedings of the Karst Modeling Symposium, Charlottesville, Virginia, February 24–27, 1999, vol 5. Karst Water Institute, Spec Publ, pp 17–29

  • Ford DC, Ewers RO (1978) The development of limestone cave systems in the dimensions of length and breadth. Can J Earth Sci 15:1783–1798

    Google Scholar 

  • Hop ND (1996) Report on geological mapping scaled 1:50000, Thuan Chau Area. Research Institute of Geology and Mineral Resources of Vietnam (in Vietnamese), Hanoi, 178 pp

    Google Scholar 

  • Hung LQ (2001) Remote sensing based hydrogeological analysis in Suoi Muoi Catchment-Vietnam. Masters dissertation, Vrije Universiteit Brussel, 88 pp

  • Hung LQ, Dinh NQ, Batelaan O, Tam VT, Lagrou D (2002) Remote sensing and GIS-based analysis of cave development in the Suoimuoi Catchment (Son La - NW Vietnam). J Cave Karst Stud 64(1):23–33

    Google Scholar 

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden Day, San Francisco, CA, 525 pp

    Google Scholar 

  • Jian WB, Yao H, Wen XH, Chen BR (1998) A nonelinear time series model for spring flow: an example from Shanxi Province, China. Groundwater 36(1):147–150

    CAS  Google Scholar 

  • Kastning EH (1999) The surface-subsurface interface and the influence of geologic structure in karst. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Proceedings of the Karst Modeling Symposium, Charlottesville, Virginia, February 24–27, 1999, vol 5. Karst Water Institute, Spec Publ, pp 43–47

  • Király L, Perrochet P, Rossier Y (1995) Effect of the epikarst on the hydrograph of karst springs; a numerical approach. Bul Centre d’ Hydrogéol Neuchâtel 14:1–22

    Google Scholar 

  • Knez M (1997) Speleogenesis of phreatic channels in bedding-planes in the frame of karst aquifer (Skocjanske jama Caves, Slovenia). Proceedings of the 12th International Congress of Speleology, vol 11, La Chaux-de-Fonds, Switzerland, pp 279–282

  • Kresic N, Papic P, Golubovic R (1992) Elements of groundwater protection in a karst environment. Environ Geol Water Sci 20(3):157–164

    CAS  Google Scholar 

  • Lachassagne P, Wyns R, Bérard P, Bruel T, Chéry L, Coutand T, Desprats JF, Strat PL (2001) Exploitation of high-yield in hard-rock aquifers: downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Ground Water 39(4):568–581

    CAS  PubMed  Google Scholar 

  • Larocque M, Banton O, Ackerer P, Razack M (1999) Determining karst transmissivities with inverse modeling and an equivalent porous media. Ground Water 37(6):897–903

    CAS  Google Scholar 

  • Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J Hydrol 205:217–231

    Article  Google Scholar 

  • Long AJ, Derickson RG (1999) Linear systems analysis in karst aquifer. J Hydrol 219:206–217

    Article  Google Scholar 

  • Mabee SB, Hardcastle KC, Wise DU (1994) A method of collecting and analyzing lineaments for regional-scale fractured-bedrock aquifer studies. Ground Water 32(6):884–894

    CAS  Google Scholar 

  • Magowe M, Carr JR (1999) Relationship between lineaments and ground water occurrence in western Botswana. Ground Water 37(2):282–286

    CAS  Google Scholar 

  • Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. J Hydrol 67:25–43

    Article  Google Scholar 

  • November J (1999) Karstgeologisch onderzoek in het gebied van Son La en Thuan Chau (NW-Vietnam). K.U. Leuven, Lic.-thesis (in Dutch), 135 pp

  • Oppenhiem AV, Schafer RW (1975) Digital signal processing. Prentice Hall, NJ, 585 pp

    Google Scholar 

  • Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:73–89

    Article  Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21

    Article  Google Scholar 

  • Sander P, Minor TB, Chesley MM (1997) Ground-water exploration based on lineament analysis and reproducibility tests. Ground Water 35(5):888–894

    CAS  Google Scholar 

  • Sasowsky ID (1999) Structural Effects on carbonate aquifers. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Proceedings of the Karst Modeling Symposium, Charlottesville, Virginia, February 24–27, 1999, vol 5. Karst Water Institute, Spec Publ, pp 38–42

  • Smart PL, Hobbs SL (1986) Characterization of carbonate aquifers: a conceptual base. Proceedings of the Environmental Problems in Karst Terranes and Their Solutions, Conference. Bowling Green, KY, pp 1–14

    Google Scholar 

  • Spolia SK, Chander S (1973) Modeling of surface runoff system by ARMA model. J Hydrol 22:317–332

    Article  Google Scholar 

  • Tam VT, Vu TMN, Batelaan O (2001) Hydrogeological characteristics of a karst mountainous catchment in the northwest of Vietnam. Acta Geol Sinica (English Edition) 75(3):260–268

    Google Scholar 

  • Tri TV, Ngoc D (1986) Report on the tectonic map of scale 1:1,000,000 of Vietnam. Research Institute of Geology and Mineral Resources (in Vietnamese), 134 pp

    Google Scholar 

  • Turcotte R, Fortin JP, Rousseau AN, Massicotte S, Villeneuve JP (2001) Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network. J Hydrol 240(3–4): 225–242

    Article  Google Scholar 

  • White WB (1969) Conceptual models of carbonate aquifers. Ground Water 7(3):15–21

    Google Scholar 

  • White WB (1999) Conceptual models for karstic aquifers. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Proceedings of the Karst Modeling Symposium, Charlottesville, Virginia, February 24–27, 1999, vol 5. Karst Water Institute, Spec Publ, pp 11–16

  • Xuyen CS (1997) Groundwater in the northwest Vietnam and groundwater supply capacity for centralized economic areas in the region. National Conference on Groundwater Resources (in Vietnamese), Research Institute of Geology and Mineral Resources, Hanoi, November 1997, pp 35–39

  • Yevjevich V (1972) Stochastic processes in hydrology. Water Resources Publications, Fort Collins, CO, 302 pp

    Google Scholar 

Download references

Acknowledgements

This work has been carried out within the project A3210 “Rural development in the mountain karst area of NW Vietnam by sustainable water and land management and social learning: its conditions and facilitation (VIBEKAP)” funded by the Flemish University Council (VLIR). The authors are grateful to all VIBEKAP’s participants for their contributions. Special thanks is paid to the former Project Coordinator, Dr. Koen Van Keer for his warm encouragement and support to this study

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Batelaan.

Appendices

Appendix

The time series cross analysis used in this study utilizes the cross-correlation function and cross-amplitude function. An overview of these functions is presented here to facilitate the comprehension of the study results. More detailed explanations and complete theoretical backgrounds can be found in Jenkin and Watts (1968), Yevjevich (1972), Oppenhiem and Schafer (1975), Box and Jenkins (1976), and others.

Cross-correlation function (CCF)

Let there be two discretised chronological series: the input, x i (x 1 , x 2 , .., x n ), is the cause of the output, y i (y 1 , y 2 , ..., y n ), where n is the total number of data pairs. The autocorrelation function (ACF), r x (k), quantifies the linear dependency of successive values of the time series x i and is defined as

$$r_x \left( k \right) = \frac{{C_x \left( k \right)}} {{C_x \left( 0 \right)}}$$
(4)

where k is the time lag (k=0 to m), with m the cutting point, which determines the length of the analysis; C x (k) is the autocovariance function given by

$$C_x \left( k \right) = \frac{1} {n}\sum\limits_{i = 1}^{n - k} {\left( {x_i - \bar x} \right)} \left( {x_{i + k} - \bar x} \right)$$
(5)

with \(\bar x\) the mean of the series.

The correlogram C(k) outlines the memory of the system. If an event has a long-term influence on the time series, the autocorrelation function decreases slowly with increasing time lag.

The cross-correlation function (CCF) represents the impulse response of the system under investigation when the input series is considered to be a white noise, and is described by following expressions

$$r_{ + k} = r_{xy} \left( k \right) = \frac{{C_{xy} \left( k \right)}} {{\sigma _x \sigma _y }}$$
(6)
$$r_{ - k} = r_{yx} \left( k \right) = \frac{{C_{yx} \left( k \right)}} {{\sigma _x \sigma _y }}$$
(7)

where C xy and C yx are cross-covariance functions, and σ x and σ y standard deviation of the series, given by

$$C_{xy} \left( k \right) = \frac{1} {n}\sum\limits_{t = 1}^{n - k} {\left( {x_t - \bar x} \right)} \left( {y_{t + k} - \bar y} \right)$$
(8)
$$C_{yx} \left( k \right) = \frac{1} {n}\sum\limits_{t = 1}^{n - k} {\left( {y_t - \bar y} \right)} \left( {x_{t + k} - \bar x} \right)$$
(9)
$$\sigma _x = \sqrt {\frac{1} {n}\sum\limits_{t = 1}^n {\left( {x_t - \bar x} \right)} ^2 }$$
(10)
$$\sigma _y = \sqrt {\frac{1} {n}\sum\limits_{t = 1}^n {\left( {y_t - \bar y} \right)} ^2 }$$
(11)

and \(\bar y\) is the mean of the series y i .

Note that the cross-correlation function is not symmetrical, r xy (k)≠r yx (k). If r xy (k)>0 for k>0, the input series x i influences the output series y i , while if r xy (k)>0 for k<0, the output influences the input. The delay time, defined as the time lag between k=0 and the maximum of r xy (k), gives an estimation of the peak impulse response time of the system.

Cross-amplitude function (CAF)

Spectrum analysis is concerned with the exploration of cyclical patterns. The purpose of the analysis is to decompose a complex time series with cyclical components into a few underlying sinusoidal functions of particular wavelength or frequency, f, the number of cycles per unit time. Thus, by identifying the underlying cyclical components, the phenomenon of interest is characterised. Changing from a time mode to a frequency mode is performed by way of a Fast Fourier Transform (FFT).

The spectral density function, S x (f), of the time series x i , corresponding to the discrete-time Fourier transform of the autocorrelation function, is defined as

$$S_x \left( f \right) = \frac{1} {2}\left[ {1 + \sum\limits_{k = 1}^m {D\left( k \right)r_x \left( k \right)\cos \left( {2\pi fk} \right)} } \right]$$
(12)

where D(k) is a filter necessary to overcome the problem of “chaotic” spikes occasionally occurring in the time series. The most frequently used filter in the analysis of the hydrological series is the Turkey filter, which is expressed as

$$D\left( k \right) = \tfrac{1} {2}\left( {1 + \cos \frac{{\pi k}} {m}} \right)$$
(13)

The cross-spectral density function, S xy (f), gives the frequency mode of the cross-correlation function and is expressed as a complex number

$$S_{xy} \left( f \right) = h_{xy} \left( f \right) - i\lambda _{xy} \left( f \right)$$
(14)

where the real part is the co-spectrum

$$h_{xy} \left( f \right) = 2\left[ {r_{xy} \left( 0 \right) + \sum\limits_1^m {\left( {r_{xy} \left( k \right) + r_{yx} \left( k \right)} \right)D\left( k \right)\text{cos}\left( {2\pi fk} \right)} } \right]$$
(15)

and the imaginary part is the quadrature spectrum

$$\lambda _{xy} \left( f \right) = 2\left[ {r_{xy} \left( 0 \right) + \sum\limits_1^m {\left( {r_{xy} \left( k \right) + r_{yx} \left( k \right)} \right)D\left( k \right)\text{sin}\left( {2\pi fk} \right)} } \right]$$
(16)

The square root of the sum of the squared co-spectrum and quadrature spectrum is called the cross-amplitude function (CAF) and is expressed as

$$\alpha _{xy} \left( f \right) = \sqrt {h_{xy}^2 \left( f \right) + \lambda _{xy}^2 \left( f \right)}$$
(17)

The cross-amplitude can be interpreted as a measure of covariance between the respective frequency components in the two series, and identifies the way in which the input signal has been modified by the system. The CAF can be associated with the duration of the impulse response function and indicates the filtering of the periodic components of the input series Padilla and Pulido-Bosch (1995).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, V.T., De Smedt, F., Batelaan, O. et al. Study of cavernous underground conduits in Nam La (Northwest Vietnam) by an integrative approach. Hydrogeol J 13, 675–689 (2005). https://doi.org/10.1007/s10040-005-0452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-005-0452-7

Keywords

Navigation