Skip to main content

Advertisement

Log in

Validation of an intrinsic groundwater pollution vulnerability methodology using a national nitrate database

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The importance of groundwater for potable supply, and the many sources of anthropogenic contamination, has led to the development of intrinsic groundwater vulnerability mapping. An Analysis of Co-Variance and Analysis of Variance are used to validate the extensively applied UK methodology, based upon nitrate concentrations from 1,108 boreholes throughout England and Wales. These largely confirm the current aquifer and soil leaching potential classifications and demonstrate the benefits of combining soil and low permeability drift information. European legislation such as the Water Framework Directive will require more dynamic assessments of pollutant risk to groundwater. These results demonstrate that a number of improvements are required to future intrinsic groundwater vulnerability methodologies. The vertical succession of geological units must be included, so that non-aquifers can be zoned in the same way as aquifers for water supply purposes, while at the same time recognising their role in influencing the quality of groundwater in deeper aquifers. Classifications within intrinsic vulnerability methodologies should be based upon defined diagnostic properties rather than expert judgement. Finally the incorporation into groundwater vulnerability methodologies of preferential flow in relation to geological deposits, soil type and land management practices represents a significant, but important, future challenge.

Resumen

La importancia de las aguas subterráneas en el abastecimiento de agua potable, y las muchas fuentes de contaminación antropogénica, ha llevado al desarrollo del mapeo de vulnerabilidad a la contaminación intrínseca de aguas subterráneas. Se han utilizado un análisis de co-varianza y análisis de varianza para validar la metodología que se ha aplicado extensamente en UK basada en concentraciones de nitrato de 1108 pozos a través de Inglaterra y Gales. Se confirma ampliamente las clasificaciones actuales de acuíferos y potencial de lixiviación del suelo y se demuestra los beneficios de combinar la información de suelos y derrubios de baja permeabilidad. La legislación europea tal como el Marco Directivo del Agua requerirá evaluaciones más dinámicas del riesgo a la contaminación de agua subterránea. Estos resultados demuestran que se requieren varias mejoras en las metodologías futuras de vulnerabilidad intrínseca a la contaminación de agua subterránea. Tiene que incluirse la secuencia vertical de las unidades geológicas de modo que las unidades que no son acuíferos puedan zonificarse de la misma manera que los acuíferos con fines de abastecimiento de agua, mientras que al mismo tiempo se reconozca el papel que tienen en la influencia de la calidad de agua subterránea en acuíferos profundos. Las clasificaciones de las metodologías de vulnerabilidad intrínseca deberían basarse en las propiedades diagnósticas características más que en el juicio experto. Finalmente la incorporación de flujo preferencial en las metodologías de vulnerabilidad de agua subterránea en relación a las formaciones geológicas, tipo de suelo y prácticas de manejo de la tierra representa un desafío futuro no solo significativo sino que importante.

Résumé

L’importance des eaux-souterraines pour l’alimentation en eau potable, et les multiples sources de contaminations anthropiques, ont conduit au développement de cartes de vulnérabilité intrinsèque des eaux souterraines aux pollutions. Une analyse de la co-variance et l’analyse de la variance sont utilisées pour valider la méthodologie extensive utilisée en UK, basée sur les concentration en nitrates de 1108 forages en Angleterre et en Ecosse. Ceci confirme les classifications courantes basées sur la nature des aquifères et le potentiel de lessivage des sols, et démontre le bénéfice que l’on peut tirer à combiner l’information dérivant des sols et des faibles perméabilités. La législation européenne telle la Directive Cadre Européenne demandera des évaluations plus dynamiques des risques de pollution affectant les eaux souterraines. Ces résultats démontrent qu’un certain nombre d’améliorations sont nécessaires aux futures méthodes de vulnérabilité intrinsèque des eaux souterraines. La succession verticale d’unités géologiques doit être pris en compte, de telle manière que les parties non-aquifères puissent être zonées de la même manière que les aquifères pour l’approvisionnement en eaux potables, et reconnaître par la même occasion leur influence sur la qualité des eaux souterraines dans les aquifères profonds. Les classifications utilisées dans les méthodes de vulnérabilité intrinsèque devraient être basées sur les propriétés d’un diagnostique défini plutôt que sur un jugement expert. Finalement l’incorporation, dans les méthodes de vulnérabilité intrinsèque, des écoulements préférentiels en relation avec les formations géologiques, les types de sol et les pratiques d’aménagement du territoire représentent un challenge futur significatif et ortant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aderhold D, Nordmeyer H (1995) Leaching of herbicides in soil macropores as a possible reason for groundwater contamination. In: Walker A, Allen R, Bailey SW, Blair AM, Brown CD, Gunther P, Leake CR, Nicholls PH (eds) Pesticide movement to water. BCPC Monograph No. 62. British Crop Protection Council, Surrey

    Google Scholar 

  • Aller L, Bennet T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: A standardised system for evaluating groundwater pollution potential using hydrogeological settings. EPA/600/2–87/035, US Environmental Protection Agency, Ada, OK

    Google Scholar 

  • Allingham KD, Cartwright R, Donaghy D, Conway JS, Goulding KWT, Jarvis SC (2002) Nitrate leaching losses and their control in a mixed farm system in the Cotswold Hills, England. Soil Use and Management 18(4):421–427

    Article  Google Scholar 

  • Avery BW (1980) Soil classification for England and Wales (Higher Categories). Soil Survey Technical Monograph No 14, Harpenden

    Google Scholar 

  • Bergström LF, Johansson R (1991) Leaching of nitrate from monolith lysimeters of different types of agricultural soils. J Env Qual 20:801–807

    Google Scholar 

  • British Standards Institute/BSI (1999) Water quality—Determination of dissolved fluoride, chloride, nitrite orthophosphate, bromide, nitrate and sulfate ions, using liquid chromatography of ions: Part 1: Method for water with low contamination. EN ISO 10304

  • Brown CD, Hollis JM, Bettinson RJ, Walker A. (2000) Leaching of pesticides and a bromide tracer through lysimeters from five contrasting soils. Pest Manag Sci 56:83–93

    Article  CAS  Google Scholar 

  • Brown CD, Hart A, Lewis KA, Dubus IG (2003) p-EMA (I): simulating the environmental fate of pesticides for a farm-level risk assessment system. Agronomie 23(1):67–74

    Article  Google Scholar 

  • Burrough PA, McDonnell RA (1998) Principles of Geographic Information Systems. 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • CEC- Council of the European Communities (1982) Groundwater Resources of the European Community: Synthetical Report. Commission of the European Union, Directorate Generalfor the Environment, consumer protection and nuclear safety. Th. Schafer GmbH, Hannover. 75pp

    Google Scholar 

  • CEC- Council of the European Communities (1991) Directive concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC)

  • Chave P (2001) The EU Water Framework Directive: An Introduction. IWA Publishing, London

    Google Scholar 

  • Di HJ, Cameron KC (2002) Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling In Agroecosystems 64(3):237–256

    Article  CAS  Google Scholar 

  • Environment Agency (1998) Policy and practice for the protection of groundwater. Stationary Office, London

  • Feast NA, Hiscock KM, Dennis PF, Andrews JN (1998) Nitrogen isotope hydrochemistry and denitrification within the Chalk aquifer system of north Norfolk, UK. J Hydrol 211(1–4):233–252

    Article  CAS  Google Scholar 

  • Fent G, Kubiak R Jene B (1999) Spatial distribution of14C-Benazolin residues and two tracers in lysimeters in comparison to a field plot experiment. In:Del Re AAM, Brown C, Capri E, Errera G, Evans SP, Trevisan M (eds) Human and environmental exposure to xenobiotics. Proc 11th Symposium Pesticide Chemistry, Cremona, Italy

    Google Scholar 

  • Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Vulnerability of soil and groundwater to pollutants, TNO Committee on Hydrological Research, The Hague, Proceedings and Information No. 38, pp 69–86

  • Fritch TG, McKnight CL, Yelderman JC, Arnold JG (2000) An aquifer vulnerability assessment of the Paluxy aquifer, central Texas, USA, using GIS and a modified DRASTIC approach. Environmental Management 25(3):337–345

    Article  PubMed  Google Scholar 

  • Geological Survey of Ireland (1999) Groundwater Protection Schemes. Report of the Department of Environment and Local Government, Environmental Protection Agency and the Geological Survey of Ireland

  • Hangen E, Buczko U, Bens O, Brunotte J, Huttl RF (2002) Infiltration patterns into two soils under conventional and conservation tillage: influence of the spatial distribution of plant root structures and soil animal activity. Soil & Tillage Res 63(3–4):181–186

    Google Scholar 

  • Hodgson JM (1997) Soil survey field handbook. Soil Survey Technical Monograph No 5, Silsoe

  • Holman IP, Palmer RC (1998) Introducing multidisciplinary groundwater vulnerability mapping to the Philippines: a case study from Cebu City. J Geological Society of the Philippines 53 (3–4):158–179

    Google Scholar 

  • Holman IP, Palmer RC (1999) Groundwater protection incorporated into land use planning: a study from Cebu City, the Philippines. In: Ellis B (ed) Impacts of Urban Growth on Surface Water and Groundwater Quality. Proc IUGG 99, Symposium HS5. IAHS Publ. no. 259, pp 125–132

  • Holman IP, Dubus IG, Hollis JM (2004) Using a linked soil model emulator and unsaturated zone leaching model to account for preferential flow when assessing the spatially distributed risk of pesticide leaching to groundwater in England and Wales. Sci of the Total Environment 318:73–88

    Article  CAS  Google Scholar 

  • Holman IP, Palmer RC, Leonaviciute N (2000) Using soil and Quaternary geological information to assess the intrinsic groundwater vulnerability of shallow aquifers: an example from Lithuania. Hydrogeol J 8:636–645

    Article  CAS  Google Scholar 

  • IPCC (1997) Greenhouse gas emissions from agricultural soils. In: Houghton JT (ed) Greenhouse Gas Inventory Reference Manual.Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC/OECD/IES. UK Meteorological Office, Bracknell, UK

    Google Scholar 

  • Jene B (1998) Transport of bromide and benazolin in lysimeters and a field plot with grid suction bases in a sandy soil. PhD, University of Hohenheim, Germany

    Google Scholar 

  • Jones RJA, Thomasson AJ (1985) An Agroclimatic databank for England and Wales. Soil Survey Technical Monograph No. 16. Soil Survey, Harpenden

    Google Scholar 

  • Jorgensen Pr, Fredericia J (1992) Migration Of Nutrients, Pesticides And Heavy-Metals In Fractured Clayey Till. Geotechnique 42(1):67–77

    Google Scholar 

  • Lord EI, Anthony SG (2000) MAGPIE: A modelling framework for evaluating nitrate losses at national and catchment scales. Soil Use And Management 16:167–174

    Google Scholar 

  • Loveland PJ (ed) (1998) The Impact of Farming Practices on Sustainable Use of Soil. Unpubl. Final Report for Department of Environment, Food and Rural Affairs project OC9403, London

  • Lovett A, Lake I, Hiscock K, Sunnenberg G, Foley A, Evers S, Fletcher S (2001) Defining groundwater protection zones in England and Wales. In: Proc Protecting Groundwater conf, Environment Agency, pp 249–260

  • Ministry of Agriculture, Fisheries and Food (1994) Fertiliser recommendations for agricultural and horticultural crops. MAFF Reference Book 209. HMSO, London

    Google Scholar 

  • Moncaster SJ, Bottrell SH, Tellam JH, Lloyd JW, Konhauser KO (2000) Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate. J Contaminant Hydro 43(2):147–163

    Article  CAS  Google Scholar 

  • Mori Y, Iwama K, Maruyama T, Mitsuno T (1999) Discriminating the influence of soil texture and management-induced changes in macropore flow using soft X-rays. Soil Sci 164(7):467–482

    Article  CAS  Google Scholar 

  • Navulur KCS, Engel BA (1998) Groundwater vulnerability assessment to non-point source nitrate pollution on a regional scale using GIS. Trans ASAE 41(6):1671–1678

    CAS  Google Scholar 

  • Palmer RC, Holman IP, Lewis MA (1995) Guide to groundwater vulnerability mapping in England and Wales. HMSO, London

    Google Scholar 

  • Pang L, Close ME, Watt JPC, Vincent KW (2000) Simulation of picloram, atrazine, and simazine leaching through two New Zealand soils and into groundwater using HYDRUS2D. J Contaminant Hydro 44:19–46

    Article  CAS  Google Scholar 

  • Rijsdijk KF, Owen G, Warren WP, McCarroll D, van der Meer JJM (1999) Clastic dykes in over-consolidated tills: evidence for subglacial hydrofracturing at Killiney Bay, eastern Ireland. Sedimentary Geol 129(1–2):111–126

    Article  Google Scholar 

  • Robins NS (1998) The quality of shallow groundwaters in Northern Ireland. J CIWEM 12 (3):163–169

    CAS  Google Scholar 

  • Robins NS (1999) Groundwater occurrence in the lower palaeozoic and precambrian rocks of the UK: Implications for source protection. J CIWEM 13(6):447–453

    Google Scholar 

  • Robins NS, Adams B, Foster S, Palmer R (1994) Groundwater vulnerability mapping: the British perspective. Hydrogéologie 3:35–42

    Google Scholar 

  • Rodvang SJ, Simpkins WW (2001) Agricultural contaminants in Quaternary aquitards: A review of occurrence and fate in North America. Hydrogeol J 9(1):44–59

    Article  CAS  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(1):18–39

    Article  CAS  Google Scholar 

  • Secunda S, Collin ML, Melloul AJ (1998) Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. J Environ Manag 54(1):39–57

    Article  Google Scholar 

  • Smith LP (1976) The agricultural climate of England and Wales. Technical Bulletin 35, HMSO, London

    Google Scholar 

  • Snedecor GW, Cochran WG (1989) Statistical methods. Iowa State University Press, Ames

    Google Scholar 

  • Stout WL, Gburek WJ, Schnabel RR, Folmar GJ, Weaver SR (1998) Soil-climate effects on nitrate leaching from cattle excreta. J Env Qual 27:992–998

    CAS  Google Scholar 

  • Swartz M, Misstear BDR, Daly D, Farrell ER (2003) Assessing subsoil permeability for groundwater vulnerability. Quart J Eng Geol 36:173–184

    Google Scholar 

  • Tesoriero AJ, Voss FD (1997) Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: implications for aquifer susceptibility and vulnerability. Groundwater 35(6):1029–1039

    CAS  Google Scholar 

  • Vinten AJA, Ball BC, O’Sullivan MF, Henshall JK, Howard R, Wright F, Ritchie R (2002) The effects of cultivation method and timing, previous sward and fertilizer level on subsequent crop yields and nitrate leaching following cultivation of long-term grazed grass and grass-clover swards. J Agric Sci 139(3):245–256

    Article  Google Scholar 

  • Vrba J, Zaporozec A (1994) Guidebook on Mapping Groundwater Vulnerability. International Contributions to Hydrogeology No. 16, International Association of Hydrogeologists. Heise, Hanover

    Google Scholar 

  • Wade HF, York AC, Morey AE, Padmore JM, Rudo KM (1998) The impact of pesticide use on groundwater in North Carolina. J Env Qual 27(5):1018–1026

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Science Group of the Environment Agency who funded this work. The views expressed in this paper are the authors own, and do not necessary reflect those of the Environment Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Holman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holman, I.P., Palmer, R.C., Bellamy, P.H. et al. Validation of an intrinsic groundwater pollution vulnerability methodology using a national nitrate database. Hydrogeol J 13, 665–674 (2005). https://doi.org/10.1007/s10040-005-0439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-005-0439-4

Keywords

Navigation