Skip to main content
Log in

Mining unique soft old water within the Manson Impact Structure, Iowa (USA)

Exploitation minière de l’unique eau douce ancienne au sein de la structure d’impact de Manson en Iowa, Etats Unis d’Amérique

La minería de única agua blanda antigua dentro de Manson Impact Structure, Iowa (EEUU)

(美国)爱荷华州曼森冲击构造内开采独特的古老软地下水

Mineração de água branda antiga dentro da Estrutura de Impacto Manson, Iowa (EUA)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The City of Manson, Iowa (USA), lies near the center of the Manson Impact Structure (MIS), a 37-km diameter impact crater that formed about 74 million years ago. The MIS is present at the bedrock surface, but it is completely buried by 20–90 m (70–300 ft) of glacial till and displays no surface expression. Groundwater samples were collected from Manson’s municipal well and nearby domestic wells to assess the sustainability of unusually soft water that typifies the central peak of the Manson Impact Structure. Groundwater quality indices from the various aquifer sources were distinctly different, with groundwater from the central peak of the crater exhibiting low Ca (<22 mg/L) and alkalinity (<127 mg/L as CaCO3), and high concentrations of fluoride (>3.7 mg/L; max = 10.0 mg/L) and certain trace elements (e.g. Li, Mo, W). In contrast, groundwater collected from wells in overlying Quaternary aquifers was very hard (high Ca and Mg), with high alkalinity (>261 mg/L as CaCO3), sulfate (58–485 mg/L) and occasionally nitrate-N (up to 6 mg/L). Age-dating techniques using 3H, 14C, and 36Cl suggested water older than 35,000 years to possibly as old as 1,000,000 years within the central peak aquifer, but indicated recent water in overlying aquifers. Pumping of the Manson municipal wells appears to be mining old water of the central peak aquifer and drawing modern water containing elevated hardness and nitrate-N down into the aquifer. The Manson example illustrates a source-water challenge of balancing aquifer quality with sustainability.

Résumé

La ville de Manson, Iowa (Etats Unis d’Amérique) est située à proximité du centre de la structure d’impact de Manson (SIM), un cratère d’impact de 37 km de diamètre qui s’est formé il y a environ 74 millions d’années. La SIM est présente à la surface du substratum, mais est complétement recouverte par 20 à 90 mètres (70–300 pieds) de moraines glaciaires et ne présente aucune expression morphologique en surface. Les échantillons d’eau souterraine ont été collectés à partir des puits municipaux de Manson et de puits domestiques dans les environs afin d’évaluer la durabilité de l’eau inhabituellement douce qui est caractéristique de la partie centrale de la SIM. Les indices de qualité de l’eau souterraine provenant de différentes sources aquifères étaient nettement distincts, avec les eaux souterraines de la partie centrale du cratère présentant une faible concentration en Ca (<22 mg/L) et alcalinité (<127 mg/L de CaCO3), et de fortes concentrations en fluorure (>3.7 mg/L ; max = 10.0 mg/L) et de certains éléments traces (par ex. Li, Mo, W). En revanche, les eaux souterraines échantillonnées au niveau de puits des aquifères quaternaires sus jacents sont caractérisées par une très forte dureté (concentrations en Ca et Mg élevées), avec une alcalinité élevée (>261 mg/L de CaCO3), avec des sulfates (58–485 mg/L) et occasionnellement avec des nitrates (jusqu’à 6 mg/L). Les techniques de datations utilisées à l’aide de 3H, 14C, et 36Cl ont suggéré des eaux de plus de 35,000 ans à voir à plus de 1,000,000 ans au sein de l’aquifère dans la partie centrale du cratère, mais ont donné des âges récents pour les aquifères sus-jacents. Pomper dans les puits municipaux de Manson revient à une exploitation minière d’eau eau ancienne de l’aquifère de la partie centrale du cratère et à drainer de l’eau récente caractérisée par une dureté élevée et des teneurs en nitrate dans l’aquifère. L’exemple de Manson illustre un défi en matière de ressource en eau afin de maintenir la qualité de l’eau de manière durable.

Resumen

La ciudad de Manson, Iowa (EEUU), se encuentra cerca del centro del Manson Impact Structure (MIS), un cráter de impacto de 37-km de diámetro que se formó hace alrededor de 74 millones de años. El MIS está presente en la superficie del basamento, pero está completamente enterrado por 20–90 m (70–300 pie) de till glaciario y no despliega ninguna expresión superficial. Las muestras de agua subterránea fueron recolectadas de pozos municipales de Manson y de pozos domésticos cercanos para evaluar la sustentabilidad de la inusual agua blanda que tipifica el pico central del Manson Impact Structure. Los índices de calidad de agua subterránea a partir de varias fuentes acuíferas fueron claramente diferentes, donde el agua subterránea del pico central del cráter exhibe bajo Ca (<22 mg/L) y alcalinidad (<127 mg/L como CaCO3), y altas concentraciones de fluoruro (>3.7 mg/L; max = 10.0 mg/L) y ciertos elementos trazas (por ejemplo Li, Mo, W). En contraste, el agua subterránea recolectada de pozos en los acuíferos del Cuaternario suprayacentes fue muy dura (alto Ca y Mg), con una alta alcalinidad (>261 mg/L como CaCO3), sulfato (58–485 mg/L) y ocasionalmente nitrato -N (hasta 6 mg/L). Las técnicas de datación de la edad usando 3H, 14C, y 36Cl sugirieron agua más viejas que 35,000 años y posiblemente tan viejas como 1,000,000 de años dentro del pico central del acuífero, pero indicaron agua reciente en los acuíferos supracentes. El bombeo en los pozos municipales del Mason parece estar realizando la minería de las aguas viejas del acuífero del pico central y extrayendo agua moderna que contiene elevada dureza y nitrato-N hacia abajo en el acuífero. El ejemplo de Manson ilustra el desafío del equilibrio de la calidad de la fuente de agua del acuífero con la sustentabilidad.

摘要

(美国)爱荷华州曼森市位于曼森撞击构造(MIS)中心附近,这个撞击构造是一个直径37公里的撞击坑,大约形成于7400万年前。曼森撞击构造存在于基岩表面,但完全被20-90 米(70-300英尺)厚的冰碛物所 覆盖,地表一点也看不到。从曼森市政井和附近家庭井中采集了地下水样,用来评价不寻常软水的可持续性,这里的软水代表着曼森撞击构造的中心峰值。各种各样的含水层地下水质量指标明显不同,撞击坑中心峰值的地下水中Ca(<22 mg/L)和碱度(CaCO3,<127 mg/L)较低,而氟含量很高(>3.7 mg/L; 最大 = 10.0 mg/L),同时也含一定数量的微量元素(例如Li, Mo, W)。与此相反,从上覆第四纪含水层井中采集的地下水非常硬(Ca和Mg含量高),碱度(CaCO3 > 261 mg/L)和硫酸盐含量(58–485 mg/L)高,硝酸盐-N含量(达6 mg/L)偶尔高。采用3H, 14C和 36Cl测年技术测量结果表明,中心峰值含水层内的水年龄至少35万年到大概1百万年,但在上覆的含水层内有近代水。曼森市政井抽水好像是开采中心峰值含水层的古老水,致使硬度增加的、含有硝酸盐-N的现代水进入含水层。曼森的实例说明了平衡含水层水质和可持续性所面临的源-水挑战。

Resumo

A Cidade de Manson, Iowa (EUA), situa-se perto do centro da Estrutura de Impacto de Manson (MIS), uma cratera de impacto com 37 km de diâmetro que se formou há cerca de 74 milhões de anos atrás. O MIS está presente à superfície do bedrock, mas encontra-se completamente soterrada por 20 a 90 m de till glacial e não tem qualquer expressão à superfície. As amostras de água subterrânea foram recolhidas no poço municipal de Manson e em poços domésticos próximos, para avaliação da sustentabilidade da água branda pouco usual que tipifica o pico central da MIS. Os índices de qualidade da água subterrânea das várias origens aquíferas são diferentemente distintos, com a água subterrânea do pico central da cratera a exibir baixos conteúdos de Ca (<22 mg/L) e alcalinidade (<127 mg/L CaCO3), e altas concentrações de fluoreto (>3.7 mg/L; máx = 10.0 mg/L) e de alguns elementos traço (por exemplo Li, Mo, W). Em contraste, a água subterrânea recolhida em poços nos aquíferos Quaternários superiores é muito dura (elevado Ca e Mg), com elevada alcalinidade (>261 mg/L CaCO3), sulfato (58–485 mg/L) e, ocasionalmente, nitrato-N (até 6 mg/L). As técnicas de datação com 3H, 14C, e 36Cl sugerem água com mais de 35,000 anos, até possivelmente tão antigas como 1,000,000 de anos, na área do aquífero do pico central, mas indicam água recente nos aquíferos sobrejacentes. O bombeamento a partir dos poços municipais de Manson parece extrair água antiga fóssil a partir do aquífero do pico central, o que produz a entrada descendente de água contendo elevada dureza e nitrato-N no aquífero inferior. O exemplo de Manson ilustra o desafio que se apresenta em relação às origens de água no balanço da qualidade da água do aquífero com a sustentabilidade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alley WM, Reilly TE Franke OL (1999) Sustainability of ground-water resources. US Geol Surv Circ 1186

  • Banner JL (2004) Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth Sci Rev 65:141–194

    Article  Google Scholar 

  • Bentley HW, Phillips FM, Davis SN, Habermehl MA, Airey PL, Calf GE, Elmore D, Gove HE, Torgersen T (1986a) Chlorine 36 dating of very old groundwater 1: The Great Artesian Basin, Australia. Water Resour Res 22:1991–2001

    Article  Google Scholar 

  • Bentley HW, Phillips FM Davis SN (1986b) Chlorine-36 in the terrestrial environment. In: Fritz P, Fontes J-C (eds) Handbook of environmental isotopes, vol. 2. pp 422–480

  • Blum JD, Chamberlain CP, Hingston MP, Koeberl C (1996) Neodymium, strontium, and oxygen isotope investigation of the target stratigraphy and impact melt rock from the Manson impact structure. In: Koeberl C, Anderson R (eds) The Manson Impact Structure, Iowa: anatomy of an impact crater. Geol Soc Am Spec Pap 302:317–324

  • Chae GT, Yun ST, Kwon MJ, Kim YS, Mayer B (2006) Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater. Geochem J 40:95–102

    Article  Google Scholar 

  • Davis SN, Cecil LDW, Zreda M, Sharma P (1998) Chorine-36 and the initial value problem. Hydrogeol J 6:104–114

    Article  Google Scholar 

  • Davis SN, Moysey S, Cecil LDW, Zreda M (2003) Chlorine-36 in groundwater of the United States: empirical data. Hydrogeol J 11:217–227

    Article  Google Scholar 

  • Davis SN, Fabryka-Martin JT, Wolfsberg LE (2004) Variations of bromide in potable ground water in the United States. Ground Water 42:902–909

    Article  Google Scholar 

  • Giordano M (2009) Global groundwater? Issues and solutions. Annu Rev Environ Resour 34(1):153–178

    Article  Google Scholar 

  • Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y, Taniguchi M, VanderSteen J (2012) Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Ground Water 50(1):19–26

    Article  Google Scholar 

  • Heath RC (1983) Basic ground-water hydrology. US Geol Surv Water Suppl Pap 2220

  • Hendry MJ, Wassenaar LI (2011) Millennial-scale diffusive migration of solutes in thick clay-rich aquitards: evidence from multiple environmental tracers. Hydrogeol J 19:259–270

    Article  Google Scholar 

  • Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Zanoguera AC, Jacobsen SB, Boynton WV (1991) Chicxulub Crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula Mexico. J Geol 19:867–871

    Article  Google Scholar 

  • Iowa Geological Survey (IGS) (2014) Iowa GEOSAM. http://ifis.iowafloodcenter.org/ifis/more/geosam/. Accessed 13 August 2014

  • Izett GA, Cobban WA, Dalrymple GB, Obradovich JD (1998) 40Ar/39Ar age of the Manson impact structure, Iowa, and correlative impact ejecta in the Crow Creek Member of the Pierre Shale (Upper Cretaceous), South Dakota and Nebraska. GSA Bull 110:361–376

    Article  Google Scholar 

  • Koeberl C, Anderson RR (1996) Manson and company: impact structures in the United States. In: Koeberl C, Anderson RR (eds) The Manson Impact Structure, Iowa: anatomy of an impact crater: Geol Soc Am Spec Pap 302, pp 1–30

  • Koeberl C, Reimold WU, Kracher A, Träxler B, Vormaier A, Körner W (1996) Mineralogical, petrographical, and geochemical studies of drill core samples from the Manson impact structure, Iowa. In: Koeberl C, Anderson RR (eds) The Manson Impact Structure, Iowa: anatomy of an impact crater. Geol Soc Am Spec Pap 302, pp 145–219

  • Lehmann BE, Davis SN, Fabryka-Martin JT (1993) Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. J Water Resour Res 29:2027–2040

    Article  Google Scholar 

  • Leybourne MI, Peter JM, Johannesson KH, Boyle DH (2008) The Lake St. Martin bolide impact has a big impact on groundwater fluoride concentrations. Geology 36:115–118

  • Love AJ, Herczeg AL, Sampson L, Cressell RG, Fifield LK (2000) Sources of chloride and implications for 36Cl dating of old groundwater, Southwestern Great Artesian Basin, Australia. J Water Resour Res 36:1561–1574

    Article  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574

    Article  Google Scholar 

  • Négrel P, Casanova J, Aranyossy J-F (2001) Strontium isotope systematics used to decipher the origin of groundwaters sampled from granitoids: the Vienne case (France). Chem Geol 177:287–308

    Article  Google Scholar 

  • Norton WH (1928) Deep wells of Iowa. Iowa Geol Surv Ann Rep 33:246–254

    Google Scholar 

  • Phillips FM, Bentley HW, Davis SN, Elmore D Swanick GR (1986) Chlorine 36 dating of very old groundwater: 2, Milk River Aquifer, Alberta, Canada. Water Resour Res 22:2003–2016

  • Plummer LN, Eggelston JR, Andreasen DC, Raffensperger JP, Hunt AG, Casile GC (2012) Old groundwater in part of the upper Patapsco aquifer, Atlantic Coastal Plain, Maryland, USA: evidence from radiocarbon, chlorine-36 and helium-4. Hydrogeol J 20:1269–1294

    Article  Google Scholar 

  • PRIME Lab (2013) Purdue Rare Isotope Measurement Laboratory, Purdue University, West Lafayette, IN. http://science.purdue.edu/primelab/. Accessed 20 September 2013

  • Poag CW, Powars DS, Poppe LJ, Mixon RB (1994) Meteoroid mayhem in Ole Virginny: source of the North American tektite strewn field. Geology 22:691–694

  • Prior JC (1991) Landforms of Iowa. University of Iowa Press, Iowa City, IA

    Google Scholar 

  • Sabo JL, Sinha T, Blowing L et al (2010) Reclaiming freshwater sustainability in the Cadillac Desert. Proceedings of the National Academy of Sciences, vol 107. NAS, Washington, DC, pp 21263–21270

  • Widga C, Walker JD Stockli LD (2010) Middle Holocene Bison diet and mobility in the eastern Great Plains (USA) based on δ13C, δ18O, and 87Sr/86Sr analyses of tooth enamel carbonate. Quat Res 73:449–463

Download references

Acknowledgements

Logistical support and funding were provided, in part, by the Iowa Department of Natural Resources. Constructive comments by two anonymous reviewers and associate editor Ate Visser improved the manuscript. We thank the City of Manson Water Department and private well owners for allowing us to sample their wells for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Schilling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilling, K.E., Anderson, R.R., Peate, D.W. et al. Mining unique soft old water within the Manson Impact Structure, Iowa (USA). Hydrogeol J 23, 95–103 (2015). https://doi.org/10.1007/s10040-014-1193-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1193-2

Keywords

Navigation