Skip to main content
Log in

Acute Toxic Effects of the Herbicide Formulation and the Active Ingredient Used in Cycloxydim-Tolerant Maize Cultivation on Embryos and Larvae of the African Clawed Frog, Xenopus laevis

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Most genetically engineered herbicide-tolerant crops are still awaiting approval in Europe. There is, however, a recent trend for the cultivation of cycloxydim-tolerant maize hybrids for use in maize production. We studied the acute toxic effects of the complementary herbicide Focus® Ultra and its active ingredient cycloxydim on embryos and early-stage larvae of the African clawed frog (Xenopus laevis). The results indicate that the herbicide formulation is significantly more toxic than the active ingredient alone. Therefore, it is suggested that the added substances either solely or in a synergistic action with the active ingredient are responsible for adverse effects. The formulation was found to be moderately toxic to embryos but highly toxic to early larvae. Based on calculated teratogenic indices, both cycloxydim and Focus® Ultra seem to be non-teratogenic and also the minimum Focus® Ultra concentration to inhibit growth in embryos and larvae was close to the LC50 values. The data suggest that tests with the rainbow trout are not in all cases appropriate to assess the risk in aquatically developing anurans. This is demonstrated by 96-h LC50 values, which are for rainbow trout more than 50- to 20-fold higher than for early X. laevis larvae. However, based on worst-case predicted environmental concentrations for surface waters, there is apparently a large safety margin in field use of Focus® Ultra if buffer strips between the farm land and the amphibian habitats are regarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldrich A (2009) Sensitivity of amphibians to pesticides. Agrarforschung 16:466–471

    Google Scholar 

  • ASTM American Society for Testing and Materials (1998) Standard guide for conducting the Frog embryo teratogenesis assay-Xenopus (FETAX)—E1439. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM American Society for Testing and Materials (2002) Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians—E729. ASTM International, West Conshohocken

    Google Scholar 

  • Bantle JA, Dumont JN, Finch RA, Linder G, Fort DJ (1998) Atlas of abnormalities: a guide for the performance of FETAX. Oklahoma State University Press, Stillwater

    Google Scholar 

  • Bantle JA, Finch RA, Fort DJ, Stover EL, Hull M, Kumsher-King M, Gaudet-Hull AM (1999) Phase III interlaboratory study of FETAX. Part 3. FETAX validation using 12 compounds with and without an exogenous metabolic activation system. J Appl Toxicol 19:447–472

    Article  CAS  Google Scholar 

  • Battaglin WA, Rice KC, Focazio MJ, Salmons S, Barry RX (2009) The occurrence of GLY, atrazine, and other pesticides in vernal pools and adjacent streams in Washington, DC, Maryland, Iowa, and Wyoming, 2005–2006. Environ Monit Assess 155:281–307

    Article  CAS  Google Scholar 

  • Böll S, Schmidt BR, Veith M, Wagner N, Rödder D, Weimann C, Kirschey T, Lötters S (2013) Anuran amphibians as indicators of changes in aquatic and terrestrial ecosystems following GM crop cultivation: a monitoring guideline. BioRisk 8:39–51

    Article  Google Scholar 

  • Boutilier RG, Stiffler DF, Toews DP (1992) Exchange of respiratory gases, ions, and water in amphibious and aquatic amphibians. In: Feder ME, Burggren WW (eds) Environmental Physiology of the Amphibians. The University of Chicago Press, Chicago, pp 81–124

    Google Scholar 

  • Burton JD, Gronwald JW, Somers DA, Gengenbach BG, Wyse DL (1989) Inhibition of corn acetyl-CoA carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pestic Biochem Physiol 34:76–85

    Article  CAS  Google Scholar 

  • BVL (2013) Absatz an Pflanzenschutzmitteln in der Bundesrepublik Deutschland—Ergebnisse der Meldungen gemäß § 64 Pflanzenschutzgesetz für das Jahr 2012. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Braunschweig, pp 13-15

  • Coady KK, Murphy MB, Villeneuve DL, Hecker M, Jones PD, Carr JA, Solomon KR, Smith EE, Van der Kraak G (2005) Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid concentrations in Xenopus laevis. Ecotoxicol Environ Saf 62:160–173

    Article  CAS  Google Scholar 

  • Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98

    Article  Google Scholar 

  • Dauber J, Brown C, Fernando AL, Finnan J, Krasuska E, Ponitka J, Styles D, Thrän D, Van Groenigen KJ, Weih M, Zah R (2012) Bioenergy from “surplus” land: environmental and socio-economic implications. BioRisk 7:5–50

    Article  Google Scholar 

  • Edginton AN, Sheridan PM, Stephenson GR, Thompson DG, Boermans HJ (2004) Comparative effects of pH and vision herbicide on two life stages of four anuran amphibian species. Environ Toxicol Chem 23:815–822

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority) (2010) Conclusion on the peer review of the pesticide risk assessment of the active substance cycloxydim. EFSA J 8:1669

    Google Scholar 

  • Erickson RJ, McKim JM (1990) A simple flow-limited model for gas exchange of organic chemicals at fish gills. Environ Toxicol Chem 9:159–165

    Article  CAS  Google Scholar 

  • Evans DH (1987) The fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Perspect 71:47–58

    Article  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Potts WTW (1999) Ionic transport in the fish gill epithelium. J Exp Zool 283:641–652

    Article  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2006) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation and excretion of nitrogeneous waste. Physiol Rev 85:97–177

    Article  Google Scholar 

  • Feder ME, Burggren WW (1985) Cutaneous gas exchange in vertebrates: design, patterns, control, and implications. Biol Rev 60:1–45

    Article  CAS  Google Scholar 

  • Fenwick JC (1989) Calcium exchange across fish gills. In: Pang PKT, Schreibman MP (eds) Vertebrate Endocrinology: Fundamentals and Biomedical Implications. Academic Press, San Diego, pp 319–338

    Google Scholar 

  • Goodrich MS, Melancon MJ, Davis RA, Lech JJ (1991) The toxicity, bioaccumulation, metabolism and elimination of dioctyl sodium sulfosuccinate DSS in rainbow trout (Oncorhynchus mykiss). Water Res 25:119–124

    Article  CAS  Google Scholar 

  • Gradwell N (1972a) Comments on gill irrigation in Rana fuscigula. Herpetologica 28:123–125

    Google Scholar 

  • Gradwell N (1972b) Gill irrigation in Rana catesbeiana, Part I. On the anatomical basis. Can J Zool 50:481–499

    Article  CAS  Google Scholar 

  • Gradwell N (1972c) Gill irrigation in Rana catesbeiana, Part II. On the musculoskeletal mechanism. Can J Zool 50:501–521

    Article  CAS  Google Scholar 

  • Gradwell N (1975) The bearing of filter feeding on the water pumping mechanism of Xenopus tadpoles (Anura: Pipidae). Acta Zool 56:119–128

    Article  Google Scholar 

  • Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157:2903–2927

    Article  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1956) Normal table of Xenopus laevis (Daudin). North Holland Publishers, Amsterdam

    Google Scholar 

  • OECD (2009) Test No. 231: amphibian metamorphosis assay. In: OECD guidelines for testing of chemicals. Section 2: effects on biotic systems. OECD Publishing, Paris

  • Puglis HJ, Boone MD (2011) Effects of technical-grade active ingredient vs. commercial formulation of seven pesticides in the presence or absence of UV radiation on survival of green frog tadpoles. Arch Environ Contam Toxicol 60:145–155

    Article  CAS  Google Scholar 

  • Schuytema GS, Nebeker AV, Griffis WL, Wilson KN (1991) Teratogenesis, toxicity, and bioconcentration in frogs exposed to dieldrin. Arch Environ Contam Toxicol 21:332–350

    Article  CAS  Google Scholar 

  • Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P, Young B (2008) Threatened Amphibians of the World. Lynx Editions, Barcelona

    Google Scholar 

  • Ultsch GR, Bradford DF, Freda J (1999) Physiology, coping with the environment. In: Altig R, McDiarmid RW (eds) Tadpoles, the Biology of Anuran Larvae. The University of Chicago Press, Chicago, pp 189–214

    Google Scholar 

  • Vancetovic J, Vidakovic M, Babic M, Radojcic DB, Bozinovic S, Stevanovic M (2009) The effect of cycloxydim tolerant maize (CTM) alleles on grain yield and agronomic traits of maize single cross hybrid. Maydica 54:91–95

    Google Scholar 

  • Viertel B (1990) Suspension feeding of anuran larvae at low concentrations of Chlorella algae (Amphibia, Anura). Oecologia 85:167–177

    Article  Google Scholar 

  • Viertel B (1992) Functional response of suspension feeding anuran larvae to different particle sizes at low concentrations. Hydrobiol 234:151–173

    Article  Google Scholar 

  • Wagner N, Reichenbecher W, Teichmann H, Tappeser B, Lötters S (2013) Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ Toxicol Chem 32:1688–1700

    Article  CAS  Google Scholar 

  • Wassersug R, Hoff K (1979) A comparative study of the buccal pumping mechanism of tadpoles. Biol J Linn Soc 12:225–259

    Article  Google Scholar 

  • Wassersug R, Hoff K (1982) Developmental changes in the orientation of the anuran jaw suspension. Evol Biol 15:223–246

    Article  Google Scholar 

  • Yu S, Wakes MR, Cai Q, Maul JD, Cobb BP (2013) Lethal and sublethal effects of three insecticides on two developmental Stages of Xenopus laevis and comparison with other amphibians. Environ Toxicol Chem 32:2056–2064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Permissions to conduct the experiments were granted by the Landesuntersuchungsamt (Koblenz, Germany) and the veterinary office Trier-Saarburg (Trier, Germany). We are grateful for financial support from the “Graduiertenkolleg 1319 - Verbesserung von Normsetzung und Normanwendung im integrierten Umweltschutz durch rechts- und naturwissenschaftliche Kooperation” at Trier University, which was funded by the German Research Foundation (DFG). Joseph D. Chipperfield helped with the English language. Reinhard Bierl (Department of Hydrology, Trier University) conducted the water analysis. Maximilian Schneider measured the fixed individuals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Wagner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, N., Lötters, S., Veith, M. et al. Acute Toxic Effects of the Herbicide Formulation and the Active Ingredient Used in Cycloxydim-Tolerant Maize Cultivation on Embryos and Larvae of the African Clawed Frog, Xenopus laevis . Bull Environ Contam Toxicol 94, 412–418 (2015). https://doi.org/10.1007/s00128-015-1474-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-015-1474-z

Keywords

Navigation