Skip to main content

Advertisement

Log in

Rice rhizodeposition and its utilization by microbial groups depends on N fertilization

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Rhizodeposits have received considerable attention, as they play an important role in the regulation of soil carbon (C) sequestration and global C cycling and represent an important C and energy source for soil microorganisms. However, the utilization of rhizodeposits by microbial groups, their role in the turnover of soil organic matter (SOM) pools in rice paddies, and the effects of nitrogen (N) fertilization on rhizodeposition are nearly unknown. Rice (Oryza sativa L.) plants were grown in soil at five N fertilization rates (0, 10, 20, 40, or 60 mg N kg−1 soil) and continuously labeled in a 13CO2 atmosphere for 18 days during tillering. The utilization of root-derived C by microbial groups was assessed by 13C incorporation into phospholipid fatty acids. Rice shoot and root biomass strongly increased with N fertilization. Rhizodeposition increased with N fertilization, whereas the total 13C incorporation into microorganisms, as indicated by the percentage of 13C recovered in microbial biomass, decreased. The contribution of root-derived 13C to SOM formation increased with root biomass. The ratio of 13C in soil pools (SOM and microbial biomass) to 13C in roots decreased with N fertilization showing less incorporation and faster turnover with N. The 13C incorporation into fungi (18:2ω6,9c and 18:1ω9c), arbuscular mycorrhizal fungi (16:1ω5c), and actinomycetes (10Me 16:0 and 10Me 18:0) increased with N fertilization, whereas the 13C incorporation into gram-positive (i14:0, i15:0, a15:0, i16:0, i17:0, and a17:0) and gram-negative (16:1ω7c, 18:1ω7c, cy17:0, and cy19:0) bacteria decreased with N fertilization. Thus, the uptake and microbial processing of root-derived C was affected by N availability in soil. Compared with the unfertilized soil, the contribution of rhizodeposits to SOM and microorganisms increased at low to intermediate N fertilization rates but decreased at the maximum N input. We conclude that belowground C allocation and rhizodeposition by rice, microbial utilization of rhizodeposited C, and its stabilization within SOM pools are strongly affected by N availability: N fertilization adequate to the plant demand increases C incorporation in all these polls, but excessive N fertilization has negative effects not only on environmental pollution but also on C sequestration in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aira M, Gomez-Brandon M, Lazcano C, Baath E, Dominguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42:2276–2281

    Article  CAS  Google Scholar 

  • Amaya-Carpio L, Davies FT, Fox T, He C (2009) Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. Fistulosa. Photosynthetica 47:1–10

    Article  CAS  Google Scholar 

  • Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. For Ecol Manage 196:43–56

    Article  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Cassman KG, Peng S, Olk DC, Ladha JK, Reichardt W, Dobermann A, Singh U (1998) Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crop Res 56:7–39

    Article  Google Scholar 

  • Coque M, Gallais A (2006) Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theor Appl Genet 112:1205–1220

    Article  CAS  PubMed  Google Scholar 

  • De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  • De Visser R, Vianden H, Schnyder H (1997) Kinetics and relative significance of remobilized and current C and N incorporation in leaf and root growth zones of Lolium perenne after defoliation: assessment by C-13 and N-15 steady-state labeling. Plant Cell Environ 20:37–46

    Article  Google Scholar 

  • Denef K, Roobroeck D, Wadu M, Lootens P, Boeckx P (2009) Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil Biol Biochem 41:144–153

    Article  CAS  Google Scholar 

  • Eickhorst T, Tippkötter R (2009) Management-induced structural dynamics in paddy soils of southeast China simulated in microcosms. Soil Tillage Res 102:168–178

    Article  Google Scholar 

  • Esperschütz J, Gattinger A, Buegger F, Lang H, Munch JC, Schloter M, Winkler JB (2009) A continuous labelling approach to recover photosynthetically fixed carbon in plant tissue and rhizosphere organisms of young beech trees (Fagus sylvatica L.) using 13C depleted CO2. Plant Soil 323:21–29

    Article  Google Scholar 

  • FAOSTAT (2013) Food and Agriculture Organization of the United Nations. Available at: http://faostat.fao.org/2013

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed  PubMed Central  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625

    Article  Google Scholar 

  • Ge TD, Yuan HZ, Zhu HH, Wu XH, Nie SA, Liu C, Tong CL, Wu J, Brookes P (2012) Biological carbon assimilation and dynamics in a flooded rice-soil. Soil Biol Biochem 48:39–46

    Article  CAS  Google Scholar 

  • Ge TD, Chen XJ, Yuan HZ, Li BZ, Zhu HH, Peng PQ, Li KL, Jones DL, Wu JS (2013) Microbial biomass, activity, and community structure in horticultural soils under conventional and organic management strategies. Eur J of Soil Biol 58:122–128

    Article  CAS  Google Scholar 

  • Ge TD, Liu C, Yuan HZ, Zhao ZW, Wu XH, Zhu ZH, Brookes PC, Wu JS (2015) Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen. Plant Soil 392:17–25

    Article  CAS  Google Scholar 

  • Gong ZT, Zhang GL, Chen ZC (eds) (2007) Pedogenesis and soil taxonomy. Science Press, Beijing, pp 613–626

    Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Jin VL, Evans RD (2010) Microbial 13C utilization patterns via stable isotope probing of phospholipid biomarkers in Mojave Desert soils exposed to ambient and elevated atmospheric CO2. Glob Chang Biol 16:2334–2344

    Article  Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    Article  CAS  Google Scholar 

  • Johansson G (1992) Below-ground carbon distribution in barley (Hordeum vulgare L.) with and without nitrogen fertilization. Plant Soil 144:93–99

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kaiser C, Frank A, Wild B, Koranda M, Richter A (2010) Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biol Biochem 42:1650–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Siniakina SV, Ruehlmann J, Domanski G, Stahr K (2002) Effect of nitrogen fertilisation on below-ground carbon allocation in lettuce. J Sci Food Agric 82:1432–1441

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Leinweber P, Sapronov D, Eckhardt K (2003) Qualitative assessment of rhizodeposits in non-sterile soil by analytical pyrolysis. J Plant Nutr Soil Sci 166:719–723

    Article  CAS  Google Scholar 

  • Leip A, Weiss F, Lesschen J, Westhoek H (2014) The nitrogen footprint of food products in the European Union. J Agric Sci 152:20–33

    Article  Google Scholar 

  • Li H, Man YB, Ye ZH, Wu C, Wu SC, Wong MH (2013) Do arbuscular mycorrhizal fungi affect arsenic accumulation and speciation in rice with different radial oxygen loss? J Hazard Mater 262:1098–1104

    Article  CAS  PubMed  Google Scholar 

  • Liu SL, Tong CL, Wu JS, Jiang P (2007) Effect of ratio of organic manure/chemical fertilizer in fertilization on rice yield under the same N condition. Acta Pedol Sin 44:106–112

    CAS  Google Scholar 

  • Liu LJ, Wang KJ, Bian JL, Xiong YW, Chen L, Wang ZQ, Yang JC (2014) Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology. Acta Agron Sin 40:1999–2007

    Article  Google Scholar 

  • Lu Y, Watanabe A, Kimura M (2002a) Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm. Biol Fertil Soils 36:136–142

    Article  CAS  Google Scholar 

  • Lu Y, Watanabe A, Kimura M (2002b) Input and distribution of photosynthesized carbon in a flooded rice soil. Global Biogeochem Cy 16:32-1–32-8

    Article  Google Scholar 

  • Lu Y, Abraham W, Conrad R (2007) Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environ Microbiol 9:474–481

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Killham K (1988) A comparison of carbon flow from pre-labeled and pulse-labeled plants. Plant Soil 112:225–231

    Article  Google Scholar 

  • Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. PANS 105:19780–19785

    Article  CAS  Google Scholar 

  • National Bureau of Statistics of China, 1949–2010. China Agriculture Yearbook. Beijing China Agriculture Press, Beijing (in Chinese)

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  CAS  PubMed  Google Scholar 

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    Article  CAS  PubMed  Google Scholar 

  • Paterson E, Neilson R, Midwood AJ, Osborne SM, Sim A, Thornton B, Millard P (2011) Altered food web structure and C-flux pathways associated with mineralisation of organic amendments to agricultural soil. Appl Soil Ecol 48:107–116

    Article  Google Scholar 

  • Pathan SI, Ceccherini MT, Hansen MA, Giagnoni L, Ascher J, Arenella M, Sørensen SJ, Pietramellara G, Nannipieri P, Renella G (2015) Maize lines with different nitrogen use efficiency select bacterial communities with different β-glucosidase-encoding genes and glucosidase activity in the rhizosphere. Biol Fertil Soils 51:995–1004

    Article  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Yeoh YK, Kasinadhuni NRP, Lonhienne TG, Robinson N, Hugenholtz P, Ragan MA, Schmidt S (2015) Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci Rep 5:8678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pausch J, Tian J, Riederer M, Kuzyakov Y (2013) Estimation of rhizodeposition at field scale: upscaling of a 14C labeling study. Plant Soil 364:273–285

    Article  CAS  Google Scholar 

  • Qiao J, Yang L, Yan T, Xue F, Zhao D (2012) Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agric Ecosyst Environ 146:103–112

    Article  CAS  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927

    Article  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggests functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010a) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2010b) The microbial PLFA composition as affected by pH in an arable soil. Soil Biol Biochem 42:516–520

    Article  CAS  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2011) Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiol Ecol 76:89–99

    Article  CAS  PubMed  Google Scholar 

  • Shamoot S, McDonald L, Bartholomew W (1968) Rhizo-deposition of organic debris in soil. Soil Sci Soc Am J 32:817–820

    Article  CAS  Google Scholar 

  • Shen JL, Tang H, Liu JY, Wang C, Li Y, Ge TD, Jones DL, Wu JS (2014) Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agric Ecosyst Environ 188:264–274

    Article  CAS  Google Scholar 

  • Shirokikh IG, Solov’eva ES, Ashikhmina TY (2014) Actinomycete complexes in soils of industrial and residential zones in the city of Kirov. Eurasian Soil Sci 47:89–95

    Article  CAS  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Smolander A, Barnette L, Kitunen V, Lumme I (2005) N and C transformations in long-term N-fertilized forest soils in response to seasonal drought. Appl Soil Ecol 29:225–235

    Article  Google Scholar 

  • Solaiman MZ, Hirata H (1995) Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes. Soil Sci Plant Nutr 41:505–514

    Article  Google Scholar 

  • Strickland MS, Rousk J (2010) Considering fungal:bacterial dominance in soil—methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    Article  CAS  Google Scholar 

  • Swinnen J, Van Veen JA, Merckx R (1994) 14C pulse-labeling of field-grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations. Soil Biol Biochem 26:161–170

    Article  Google Scholar 

  • Thornton B, Zhang Z, Mayes RW, Hogberg MN, Midwood AJ (2011) Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance? Rapid Commun Mass Spectrom 25:2433–2438

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Fan MS, Guo JH, Marschner P, Li XL, Kuzyakov Y (2012) Effects of land use intensity on dissolved organic carbon properties and microbial community structure. Eur J Soil Biol 52:67–72

    Article  Google Scholar 

  • Tian J, Dippold M, Pausch J, Blagodatskaya E, Fan M, Li X, Kuzyakov Y (2013a) Microbial response to rhizodeposition depending on water regimes in paddy soils. Soil Biol Biochem 65:195–203

    Article  CAS  Google Scholar 

  • Tian J, Pausch J, Fan M, Li X, Tang Q, Kuzyakov Y (2013b) Allocation and dynamics of assimilated carbon in rice-soil system depending on water management. Plant Soil 363:273–285

    Article  CAS  Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520

    Article  CAS  PubMed  Google Scholar 

  • Wang DJ, Liu Q, Lin JH, Sun RJ (2004) Optimum nitrogen use and reduced nitrogen loss for production of rice and wheat in the Yangtse Delta region. Environ Geochem Health 26:221–227

    Article  PubMed  Google Scholar 

  • Wang J, Chapman SJ, Yao H (2016) Incorporation of 13C-labelled rice rhizodeposition into soil microbial communities under different fertilizer applications. Appl Soil Ecol 101:11–19

    Article  Google Scholar 

  • Weintraub MN, Scott-Denton LE, Schmidt SK, Monson RK (2007) The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154:327–338

    Article  PubMed  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Yamauchia T, Shimamura S, Nakazono M, Mochizuki T (2013) Aerenchyma formation in crop species: a review. Field Crop Res 152:8–16

    Article  Google Scholar 

  • Yao H, Thornton B, Paterson E (2012) Incorporation of 13C-labelled rice rhizodeposition carbon into soil microbial communities under different water status. Soil Biol Biochem 53:72–77

    Article  CAS  Google Scholar 

  • Yao H, Chapman SJ, Thornton B, Paterson E (2015) 13C-PLFA: a key to open the soil microbial black box? Plant Soil 392:3–15

    Article  CAS  Google Scholar 

  • Yuan H, Ge T, Zhou P, Liu S, Roberts P, Zhu H, Zou Z, Tong C, Wu J (2013) Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils. J Soil Sediment 13:877–886

    Article  Google Scholar 

  • Yuan H, Zhu Z, Liu S, Ge T, Jing H, Li B, Liu Q, Lynn M, Wu J, Kuzyakov Y (2016) Microbial utilization of rice root exudates: 13C labeling and PLFA composition. Biol Fertil Soils 50:615–627

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (41671292; 41522107), Key Projects of International Cooperation in Science and Technology Innovation (S2016G0053), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020401), Royal Society Newton Advanced Fellowship (NA150182), and the Recruitment Program of High-end Foreign Experts of the State Administration of Foreign Experts Affairs awarded to Y. K. (GDW20144300204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshui Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, T., Li, B., Zhu, Z. et al. Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biol Fertil Soils 53, 37–48 (2017). https://doi.org/10.1007/s00374-016-1155-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1155-z

Keywords

Navigation