Skip to main content
Log in

Differential growth patterns and fitness may explain contrasted performances of the invasive Prunus serotina in its exotic range

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

This research investigates why the invasive American black cherry tends to dominate the forest canopy on well-drained, nutrient-poor soils, but usually hardly establishes on both waterlogged and calcareous soils in its exotic range. Prunus serotina was sampled from four soil types and two light conditions, to measure (1) radial growth; (2) height growth compared to the main native competitor, Fagus sylvatica; (3) leaf traits; (4) seed production; and (5) rate of fungal attack. We found that P. serotina invested a significant amount of energy in height growth and seed production on well-drained, nutrient-poor soils. These characteristics enabled it to rapidly capture canopy gaps and subsequently exert a mass effect on neighbouring stands. On moist soils, we found irregular growth patterns and high rates of fungal attack, while on calcareous soils, leaf traits suggested a low nitrogen assimilation rate, limiting the production of N-containing compounds. We conclude that P. serotina fails on waterlogged and calcareous soils because it is unable to allocate sufficient energy to fruiting and/or height growth. Conversely, it succeeds on well-drained, nutrient-poor soils because of high fitness which increases its invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Persp Plant Ecol Evol Syst 3:52–66

    Article  Google Scholar 

  • Auclair AN, Cottam G (1971) Dynamics of black cherry (Prunus serotina Ehrh.) in southern Wisconsin oak forests. Ecology Monogr 41:153–177

    Article  Google Scholar 

  • Bakker MR, Garbaye J, Nys C (2000) Effect of liming on the ectomycorrhizal status of oak. For Ecol Manage 126:121–131

    Article  Google Scholar 

  • Bazzaz FA (1996) Plants in changing environments. Cambridge University Press, Cambridge

    Google Scholar 

  • Bucharova A, van Kleunen M (2009) Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. J Ecol 97:230–238

    Article  Google Scholar 

  • Caraglio Y, Barthelemy D (1997) Revue critique des termes relatifs à la croissance et à la ramification des tiges des végétaux vasculaires. In: Bouchon J, de Reffye Ph, Barthelemy D (eds) Modélisation et simulation de l’architecture des végétaux. Sciences Update/Editions INRA, Paris, pp 11–88

  • Chaar H, Colin F, Collet C (1997) Effects of environmental factors on the shoot development of Quercus petraea seedlings. A methodological approach. For Ecol Manage 97:119–131

    Article  Google Scholar 

  • Chabrerie O, Roulier F, Hoeblich H, Sebert E, Closset-Kopp D, Leblanc I, Jaminon J, Decocq G (2007) Defining patch mosaic functional types to predict invasion patterns in a forest landscape. Ecol Appl 17:464–481

    Article  PubMed  Google Scholar 

  • Chabrerie O, Verheyen K, Saguez R, Decocq G (2008) Disentangling relationships between habitat conditions, disturbance history, plant diversity and American Black cherry (Prunus serotina Ehrh.) invasion in a European temperate forest. Divers Distrib 14:204–212

    Article  Google Scholar 

  • Closset-Kopp D, Chabrerie O, Valentin B, Delachapelle H, Decocq G (2007) When Oskar meets Alice: does a lack of trade-off in r/K-strategies make Prunus serotina a successful invader of European forests? For Ecol Manage 247:120–130

    Article  Google Scholar 

  • Coomes DA, Grubb PJ (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol Monogr 70:171–207

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE (2003) Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Crawley M, Harvey P, Purvis A (1997) Comparative ecology of the native and alien floras of the British Isles. In: Silvertown J, Franco M, Harper J (eds) Plant life histories. Ecology, phylogeny and evolution. Cambridge University Press, Cambridge, pp 36–53

    Google Scholar 

  • Dewar RC (1993) A root-shoot partitioning model based on carbon-nitrogen-water interactions and Münch phloem flow. Funct Ecol 7:356–368

    Article  Google Scholar 

  • Dong M, de Kroon H (1994) Plasticity in morphology and biomass allocation in Cynodondactylon, a grass species forming stolons and rhizomes. Oikos 70:99–106

    Article  Google Scholar 

  • Duchesne L, Ouimet R, Morneau C (2003) Assessment of sugar maple health based on basal area growth pattern. Can J For Res 33:2074–2080

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  PubMed  Google Scholar 

  • Durand LZ, Goldstein G (2001) Growth, leaf characteristics, and spore production in native and invasive tree ferns in Hawaii. Am Fern J 91:25–35

    Article  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5. Aufl, Ulmer

    Google Scholar 

  • Erland S, Söderström B (1991) Effects of liming on ectomycorrhizal fungi infecting Pinus sylvestris L. III. Saprophytic growth and host plant infection at different pH values in unsterile humus. New Phyt 117:405–411

    Article  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Field CB, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givinsh TJ (ed) On the economy of form and function. Cambridge University Press, Cambridge, pp 25–55

    Google Scholar 

  • Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081

    Article  PubMed  CAS  Google Scholar 

  • Godefroid S, Rucquoij S, Koedam N (2006) Spatial variability of summer microclimates and vegetation response along transects within clearcuts in a beech forest. Plant Ecol 185:107–121

    Article  Google Scholar 

  • Groeneveld HW, Bergkotte M, Lambers H (1998) Leaf growth in the fast-growing Holcus lanatus and the slow growing Deschampsia flexuosa: tissue maturation. J Exp Bot 49:1509–1517

    Article  CAS  Google Scholar 

  • Harrington RA, Brown BJ, Reich PB (1989) Ecophysiology of exotic and native shrubs in Southern Wisconsin: I. Relationship of leaf characteristics, resource availability, and phenology to seasonal patterns of carbon gain. Oecologia 80:356–367

    Article  Google Scholar 

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol. Invasions 10:483–506

    Article  Google Scholar 

  • Hough AF (1965) Black cherry (Prunus serotina Ehrh.). In: Fowells HA (eds) Silvics of forest trees of the United States. Comp. U.S. Department of Agriculture, Agriculture Handbook 271. Washington, DC, pp 539–545

  • Hulme PE (2008) Phenotypic plasticity and plant invasions: is it all Jack? Funct Ecol 22:3–7

    Article  Google Scholar 

  • Iason GR, Hester AJ (1993) The response of heather (Calluna vulgaris) to shade and nutrients: predictions of the carbon-nutrient balance hypothesis. J Ecol 81:75–80

    Article  Google Scholar 

  • Johnson SE, Abrams MD (2009) Basal area increment trends across age classes for two long-lived tree species in the eastern US. TRACE 7:127–134

    Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Knapp LB, Canham CD (2000) Invasion of an old-growth forest in New York by Ailanthus altissima: sapling growth and recruitment in canopy gaps. J Torrey Bot Soc 127:307–315

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Küster EC, Kühn I, Bruelheide H, Klotz S (2008) Trait interactions help explain plant invasion success in the German flora. J Ecol 96:860–868

    Article  Google Scholar 

  • Lehto T (1994) Effects of soil pH and calcium on mycorrhizas of Picea abies. Plant Soil 163:69–75

    CAS  Google Scholar 

  • Leishman MR, Haslehurst T, Ares A, Baruch Z (2007) Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phyt 176:635–643

    Article  CAS  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1538

    Article  Google Scholar 

  • Margolis HA, Vezina LP, Ouimet R (1988) Relation of light and nitrogen-source to growth, nitrate reductase and glutamine-synthetase activity of jack pine seedlings. Physiol Planta 72:790–795

    Article  CAS  Google Scholar 

  • Marino PC, Eisenberg RM, Cornell HV (1997) Influence of sunlight and soil nutrients on clonal growth and sexual reproduction of the understory perennial herb Sanguinaria canadensis L. J Torrey Bot Soc 124:219–227

    Article  Google Scholar 

  • Marquis DA (1990) Prunus serotina Ehrh. Black cherry. In: RM Burns, BH Honkala (eds) Silvics of North America. US Department of Agriculture, Agriculture Handbook 654, Washington, DC, pp 594–604

  • McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80:2581–2593

    Article  Google Scholar 

  • Milbau A, Nijs I, Van Peer L, Reheul D, De Cauwer B (2003) Disentangling invasiveness and invasibility during invasion in synthesized grassland communities. New Phyt 159:657–667

    Article  Google Scholar 

  • Minotta G, Pinzauti S (1996) Effects of light and soil fertility on growth leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings. For Ecol Manage 86:61–71

    Article  Google Scholar 

  • Nagel JM, Griffin KL (2001) Construction cost and invasive potential: comparing Lythrum salicaria (Lythraceae) with co-occurring native species along pond banks. Am J Bot 88:2252–2258

    Article  Google Scholar 

  • Osone Y, Ishida A, Tateno M (2008) Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots. New Phyt 179:417–427

    Article  CAS  Google Scholar 

  • Pairon M, Jonard M, Jacquemart AL (2006) Modeling seed dispersal of black cherry an invasive forest tree: how microsatellites may help? Can J For Res 36:1385–1394

    Article  Google Scholar 

  • Pairon M, Petitpierre B, Campbell M, Guisan A, Broennimann O, Baret PV, Jacquemart AL, Besnard G (2010) Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae). Ann Bot 105:881–890. doi:10.1093/aob/mcq065

    Article  PubMed  CAS  Google Scholar 

  • Pan C, Tajchman SJ, Kochenderfer JN (1997) Dendroclimatological analysis of major forest species of the central Appalachians. For Ecol Manage 98:77–87

    Article  Google Scholar 

  • Pattison RR, Goldstein G, Ares A (1998) Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117:449–459

    Article  Google Scholar 

  • Petitpierre B (2008) Ecological and phylogeographical approach of a biological invasion: Prunus serotina, a case study. MSc thesis, University of Lausanne, Lausanne, Switzerland

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest. Ecology 87:1733–1743

    Article  PubMed  Google Scholar 

  • Poorter H, de Jong R (1999) A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phyt 143:163–176

    Article  CAS  Google Scholar 

  • Pyšek P, Richardson DM (2007) Traits associated with invasiveness: where do we stand?. Nentwig Ed. Springer, Berlin, pp 97–122

    Google Scholar 

  • Pyšek P, Krivánek M, Jarošík V (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90:2734–2744

    Article  PubMed  Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993

    Article  PubMed  Google Scholar 

  • Sack L, Grubb PJ (2002) The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings. Oecologia 131:175–185

    Article  Google Scholar 

  • Sanford NK, Harrington RA, Fownes JH (2003) Survival and growth of native and alien woody seedlings in open and understorey environments. For Ecol Manage 183:377–385

    Article  Google Scholar 

  • Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38

    Google Scholar 

  • Standish RJ, Robertson AW, Williams PA (2001) The impact of an invasive weed Tradescantia fluminensis on native forest regeneration. J Appl Ecol 38:1253–1263

    Article  Google Scholar 

  • Starfinger U (1997) Introduction and naturalization of Prunus serotina in central Europe. In: Brock JH, Wade M, Pyšek P, Green D (eds) Plant invasions: studies from North America and Europe. Leiden, Backhuys, pp 161–171

    Google Scholar 

  • StatSoft Inc. (1996) Statistica for windows 5.1 (Computer program manual). USA Statsoft Inc., Tulsa

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Arizona Press, Tucson

    Google Scholar 

  • Valladares F, Chico JM, Aranda I, Balaguer L, Dizengremel P, Manrique E, Dreyer E (2002) The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16:395–403

    CAS  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phyt 176:749–763

    Article  Google Scholar 

  • Vanhellemont M, Verheyen K, Staelens J, Hermy M (2010) Factors affecting radial growth of the invasive Prunus serotina in pine plantations in Flanders. Eur J For Res 129:367–375

    Google Scholar 

  • Verheyen K, Vanhellemont M, Stock T, Hermy M (2007) Predicting patterns of invasion by black cherry (Prunus serotina Ehrh.) in Flanders (Belgium) and its impact on the forest understorey community. Divers Distrib 13:487–497

    Article  Google Scholar 

  • Walters MB, Reich PB (2000) Seed size, nitrogen supply and growth rate affect tree seedling survival in deep shade. Ecology 81:1887–1901

    Article  Google Scholar 

  • Williamson M, Fitter A (1996) The characteristics of successful invaders. Biol Conserv 78:163–170

    Article  Google Scholar 

  • Wilson J, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phyt 143:155–162

    Article  Google Scholar 

  • Yamashita N, Ishida A, Kushima H, Tanaka N (2000) Acclimation to sudden increase in light favouring an invasive over native trees in subtropical islands, Japan. Oecologia 125:412–419

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analyses, 2nd edn. Prentice-Hall, Englewood Cliffs, 718p

  • Zou J, Rogers WE, Siemann E (2007) Differences in morphological and physiological traits between native and invasive populations of Sapium sebiferum. Funct Ecol 21:721–730

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Charles Abramson and Dr. Mark Bilton for their help in improving the editing and the English writing. We also thank the anonymous referees for their helpful comments on an earlier version of the manuscript. The French ‘Office National des Forêts’ provided facilities during field works. This study was financially supported by the French ‘Ministère de l’Écologie et du Développement Durable’ (INVABIO II program, CR no. 09-D/2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Decocq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Closset-Kopp, D., Saguez, R. & Decocq, G. Differential growth patterns and fitness may explain contrasted performances of the invasive Prunus serotina in its exotic range. Biol Invasions 13, 1341–1355 (2011). https://doi.org/10.1007/s10530-010-9893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9893-6

Keywords

Navigation