Skip to main content
Log in

Wide spread invasion without sexual reproduction? A case study on European willows in Patagonia, Argentina

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Willows of the Salix albaSalix fragilis complex, native to western Eurasia, represent typical invaders of floodplain ecosystems worldwide. Introduced to South America by European settlers probably at the end of the nineteenth century, their distribution has increased significantly along the rivers in Northern Patagonia. This case study carried out mainly in the area around Lake Nahuel Huapi aims to analyze clonal structures and their spatial distribution using molecular markers as well as to relate the observed patterns to settlement history and life history traits of this species complex. Leaf material from 171 trees was collected along selected river floodplains in Northern Patagonia and genotypes were determined at six microsatellite loci. Including 62 reference samples of the S. albaS. fragilis complex from German rivers, Probability of Identity (P ID) was calculated and a Principal Coordinate Analysis (PCoA) conducted. From the altogether thirteen different genotypes detected, one dominant genotype (female) formed monoclonal stands along most of the studied river stretches. The maximum linear distance between the most remote ramets of this clone was 790 km. Evidence arose that the colonizing process so far is exclusively based on vegetative propagation in the focal study area and is obviously attributable to the pronounced brittleness of the hybrid parent S. fragilis. However, outside this area the occurrence of male trees and a diversity of genotypes indicate that evolutionary processes by recombination are involved within the willow complex. Therefore, an increase in genotypes can be assumed when male individuals and therefore sexual reproduction would appear in the area around Lake Nuhuel Huapi. This could be a crucial point for the long-term invasion success of the taxa when climatic and other environmental conditions will change in Southern Argentina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adair R, Sagliocco JL, Bruzzese E (2006) Strategies for the biological control of invasive willows (Salix spp.) in Australia. Aust J Entomol 45:259–267

    Article  Google Scholar 

  • Ahmad R, Liow PS, Spencer DF, Jasieniuk M (2008) Molecular evidence for a single genetic clone of invasive Arundo donax in the United States. Aquat Bot 88:113–120

    Article  CAS  Google Scholar 

  • Barker JHA, Pahlich A, Trybush S, Edwards KJ, Karp A (2003) Microsatellite markers for diverse Salix species. Mol Ecol Notes 3:4–6

    Article  CAS  Google Scholar 

  • Barrett SCH, Echert CG, Husband BC (1993) Evolutionary processes in aquatic plant populations. Aquat Bot 44:105–145

    Article  Google Scholar 

  • Barsoum N (2002) Relative contribution of sexual and asexual regeneration strategies in Populus nigra and Salix alba during the first years of establishment on a braided gravel bed river. Evol Ecol 15:255–279

    Article  Google Scholar 

  • Beismann H, Barker JHA, Karp A, Speck T (1997) AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol Ecol 6:989–993

    Article  CAS  Google Scholar 

  • Beismann H, Wilhelmi H, Bailleres H, Spatz HC, Bogenrieder A, Speck T (2000) Brittleness of twig bases in the genus Salix: fracture mechanics and ecological relevance. J Exp Botany 51:617–633

    Article  CAS  Google Scholar 

  • Brown RL, Peet RK (2003) Diversity and invasibility of southern Appalachian plant communities. Ecology 84:32–39

    Article  Google Scholar 

  • Correa MN (1984) Flora Patagonica—Dicotyledones dialipétalas (Salicaceae a Cruciferae). Colección científica del INTA, Buenos Aires

    Google Scholar 

  • Correa MN (1998) Flora Patagonica. Colección Científica del INTA, Buenos Aires

    Google Scholar 

  • De Cock K, Lybeer B, Vander Mijnsbrugge K, Zwaenepoel A, Van Peteghem P, Quataert P, Breyne P, Goetghebeur P, Van Slycken J (2003) Diversity of the willow complex Salix albaS x rubensS-fragilis. Silvae Genet 52:148–153

    Google Scholar 

  • Di Castri F (1989) History of biological invasions with emphasis on the Old World. In: Drake J, Di Castri F, Groves R, Kruger F, Mooney HA, Rejmanek M, Williamson M (eds) Biological invasions: a global perspective. Wiley, New York, pp 1–30

    Google Scholar 

  • Dimitri MJ (1972) La Región de los Bosques Andino-patagónicos. Colección científica del INTA, Buenos Aires

    Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretic Appl Genet 91:1253–1256

    CAS  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen and Co. Ltd., London

    Google Scholar 

  • Gil L, Fuentes-Utrilla P, Soto A, Cervera MT, Collada C (2004) English elm is a 2,000-year-old Roman clone. Nature 431:1053

    Article  CAS  PubMed  Google Scholar 

  • Glova GJ, Sagar PM (1994) Comparison of fish and macroinvertebrate standing stocks in relation to Riparian Willows (Salix spp) in 3 New-Zealand streams. N Z J Mar Freshw Res 28:255–266

    Article  Google Scholar 

  • Greenwood H, O’Dowd DJ, Lake PS (2004) Willow (Salix x rubens) invasion of the riparian zone in south-eastern Australia: reduced abundance and altered composition of terrestrial arthropods. Divers Distrib 10:485–492

    Article  Google Scholar 

  • Hanley S, Barker JHA, Van Ooijen JW, Aldam C, Harris SL, Ahman I, Larsson S, Karp A (2002) A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theoret Appl Genet 105:1087–1096

    Article  CAS  Google Scholar 

  • Hollingsworth ML, Bailey JP (2000) Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Bot J Linn Soc 133:463–472

    Google Scholar 

  • Hulme M, Sheard N (2000) Escenarios de cambio climático para la Argentina. In: Bertonatti C, Corcuera J (eds) Situacion ambiental Argentina 2000. Fundacion vida Silvestre Argentina, Buenos Aires, pp 314–319 440 pp

    Google Scholar 

  • Hunziker JH (1962) The Origin of the Hybrid Triploid Willows Cultivated in Argentina. Silvae Genet 11:151–153

    Google Scholar 

  • Husband BC, Barrett SCH (1991) Colonization History and Population Genetic Structure of Eichhornia paniculata in Jamaica. Heredity 66:287–296

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Koppitz H, Kühl H, Kohl J-G (2000) Asexuelle Reproduktion: Zur Bedeutung der genetischen Diversität von Phragmites australis für die Entwicklung von Schilfbeständen. Schriftenreihe für Vegetationskunde Bundesamt für Naturschutz 32:57–60

    Google Scholar 

  • Kowarik I (2003) Biologische Invasionen—Neophyten und Neozoen in Mitteleuropa. Eugen Ulmer GmbH and Co., Stuttgart

    Google Scholar 

  • Lautenschlager-Fleury D, Lautenschlager-Fleury E (1994) Die Weiden von Mittel- und Nordeuropa. Birkhäuser, Basel

    Google Scholar 

  • Leyer I (2006) Dispersal, diversity and distribution patterns in pioneer vegetation: the role of river-floodplain connectivity. J Veg Sci 17:407–416

    Article  Google Scholar 

  • Li J, Ye WH (2006) Genetic diversity of alligator weed ecotypes is not the reason for their different responses to biological control. Aquat Bot 85:155–158

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • NaumannM (1996) Das nordpatagonische Seengebiet Nahuel Huapi (Argentinien). Biogeographische Struktur, Landnutzung seit dem 17. Jahrhundert und aktuelle Degradationsprozesse. Dissertation, University of Marburg, Marburger Geographische Schriften, Heft 131

  • Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE, Huff DR (1995) Evolutionary implications of allozyme and RAPD Variation in diploid populations of dioeciousbuffalograss Buchloe dactyloides. Mol Ecol 4:135–147

    Article  CAS  Google Scholar 

  • Peri PL, Bloomberg M (2002) Windbreaks in southern Patagonia, Argentina: a review of research on growth models, windspeed reduction, and effects on crops. Agrofor Syst 56:129–144

    Article  Google Scholar 

  • Petts GE, Möller H, Roux AL (1989) Historical change of large alluvial rivers: Western Europe. Wiley, Chichester

    Google Scholar 

  • Primack RB (2002) Essentials of conservation biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Ren MX, Zhang QG, Zhang DY (2005) Random amplified polymorphic DNA markers reveal low genetic variation and a single dominant genotype in Eichhornia crassipes populations throughout China. Weed Res 45:236–244

    Article  CAS  Google Scholar 

  • Renöfält BM, Jansson R, Nilsson C (2005) Spatial patterns of plant invasiveness in a riparian corridor. Landsc Ecol 20:165–176

    Article  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  • Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Shafroth PB, Scott ML, Friedman JM, Laven RD (1994) Establishment, Sex Structure and Breeding System of an Exotic Riparian Willow, Salix x rubens. Am Midl Nat 132:159–172

    Article  Google Scholar 

  • Stohlgren TJ, Binkley D, Chong GW, Kalkhan MA, Schell LD, Bull KA, Otsuki Y, Newman G, Bashkin M, Son Y (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69:25–46

    Article  Google Scholar 

  • Triest L (2001) Hybridization in staminate and pistillate Salix alba and S. fragilis (Salicaceae): morphology versus RAPDs. Plant Syst Evol 226:143–154

    Article  Google Scholar 

  • Triest L, De Greef B, De Bondt R, Van Slycken J (2000) RAPD of controlled crosses and clones from the field suggests that hybrids are rare in the Salix alba-Salix fragilis complex. Heredity 84:555–563

    Article  PubMed  Google Scholar 

  • Trung LQ, Van Puyvelde K, Triest L (2008) Consensus primers of cyp73 genes discriminate willow species and hybrids (Salix, Salicaceae). Mol Ecol Resour 8:455–458

    Article  CAS  Google Scholar 

  • Urban AJ, Eardley CD (1995) A recently introduced sawfly, Nematus oligospilus Forster (Hymenoptera: Tenthredinidae), that defoliates willows in southern Africa. Afr Entomol 3:23–27

    Google Scholar 

  • Walter H, Breckle S-W (1999) Vegetation und Klimazonen. Ulmer, Stuttgart

    Google Scholar 

  • Wang BR, Li WG, Wang JB (2005) Genetic diversity of Alternanthera philoxeroides in China. Aquat Bot 81:277–283

    Article  Google Scholar 

  • Weber E (1974) Monographie der Salix alba L. spec. plant. (1753) unter Berücksichtigung genetischer und züchterischer Aspekte. Forstwissenschaftliches Centralblatt 93:233–247

    Article  Google Scholar 

  • With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203

    Article  Google Scholar 

  • Zalba S, Villamil C (2002) Woody plant invasion in relictual grasslands. Biol Invasions 4:55–72

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Carolina Moreno and Carolina Soliani for their help in the laboratory in Bariloche. For the help while sample collection in Patagonia, we thank Abel Martinez and Alejandro Aparicio, and Fernando Raffo for providing the GIS-files. Many thanks also go to Adam Hajduk for sharing his great knowledge of the Patagonian history with us. Furthermore, we acknowledge the National Park Nahuel Huapi, where part of the samples was collected and especially Adolfo Moretti who facilitated sample collections on the Victoria Island. Further thanks go to Christina Mengel for her valuable help in the laboratory in Marburg, to Eike Lena Neuschulz for sample collection at the Elbe River and to two anonymous reviewers for valuable comments on an earlier version of this manuscript. Grant to E.M. by the Deutsche Bundesstiftung Umwelt DBU (DBU—German Environment Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Leyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budde, K.B., Gallo, L., Marchelli, P. et al. Wide spread invasion without sexual reproduction? A case study on European willows in Patagonia, Argentina. Biol Invasions 13, 45–54 (2011). https://doi.org/10.1007/s10530-010-9785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9785-9

Keywords

Navigation