Skip to main content
Log in

Invasion history of Cardamine hirsuta in Japan inferred from genetic analyses of herbarium specimens and current populations

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Multiple introductions of a species are thought to enhance its invasion success by increasing genotypic diversity; this involves frequent crossing among different lineages. However, genetic diversity through crossing is less likely in autogamous species. To understand the impact of multiple introductions on the colonization success of autogamous species, we studied hairy bittercress, Cardamine hirsuta, which invaded Japan several decades ago. We detected temporal changes in its population structure using nine microsatellite markers amplified from leaf samples collected from 87 sites between 2009 and 2010, and herbarium specimens collected between 1988 and 2007. To examine whether the phenotypic variation corresponded with the genetic population structure, we also investigated the geographic variation in the lateral stamen number of this species across 49 sites. The present populations can be divided into three genetic groups, which are distributed in northern, eastern, and western Japan. This finding suggests that there are three invasive lineages (North, East, and West) in Japan. The geographic variation in lateral stamen number corresponded to the distributions of these lineages. The former distributions of the North and West lineages mostly corresponded to those found at present, but they were also historically found in eastern Japan. However, the East lineage has apparently expanded into eastern Japan, resulting in a change in dominant lineages over only a few decades. For the autogamous C. hirsuta, multiple introductions contributed toward colonization success over a wider range, which was associated with a local change in the dominant lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amsellem L, Noyer JL, Le Bourgeois T, Hossaert-McKey M (2000) Comparison of genetic diversity of the invasive weed Rubus alceifolius poir. (Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:443–455

    Article  CAS  PubMed  Google Scholar 

  • Anderson JT, Inouye DW, McKinney AM et al (2012) Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc R Soc B Biol Sci 279:3843–3852

    Article  Google Scholar 

  • Barrett SCH, Colautti RI, Eckert CG (2008) Plant reproductive systems and evolution during biological invasion. Mol Ecol 17:373–383

    Article  PubMed  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P et al (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Bossdorf O, Auge H, Lafuma L et al (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11

    Article  PubMed  Google Scholar 

  • Colautti RI, Lau JA (2015) Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol 49:1999–2017

    Article  Google Scholar 

  • Culliney TW (2005) Benefits of classical biological control for managing invasive plants. CRC Crit Rev Plant Sci 24:131–150

    Article  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Dormontt EE, Gardner MG, Breed MF et al (2014) Genetic bottlenecks in time and space: reconstructing invasions from contemporary and historical collections. PLoS One 9:e106874

    Article  PubMed  PubMed Central  Google Scholar 

  • Durka W, Bossdorf O, Prati D, Auge H (2005) Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol Ecol 14:1697–1706

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Williamson S, Bustamante CD (2007) A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651

    Article  PubMed  PubMed Central  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology. A functional approach to common British species. Unwin Hyman, London

    Google Scholar 

  • Grimsby JL, Kesseli R (2010) Genetic composition of invasive Japanese knotweed s.l. in the United States. Biol Invasions 12:1943–1946

    Article  Google Scholar 

  • Hagenblad J, Hülskötter J, Acharya KP et al (2015) Low genetic diversity despite multiple introductions of the invasive plant species Impatiens glandulifera in Europe. BMC Genet 16:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Hastings A, Cuddington K, Davies KF et al (2004) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101

    Article  Google Scholar 

  • Hay AS, Pieper B, Cooke E et al (2014) Cardamine hirsuta: a versatile genetic system for comparative studies. Plant J 78:1–15

    Article  CAS  PubMed  Google Scholar 

  • Holt RD (2009) Up against the edge: invasive species as testbeds for basic questions about evolution in heterogeneous environments. Mol Ecol 18:4347–4348

    Article  PubMed  Google Scholar 

  • Hutchinson WF, van Oosterhout C, Rogers SI, Carvalho GR (2003) Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proc Biol Sci 270:2125–2132

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaspars-Schrader TW (1982) Het onderscheid tussen Cardamine flexuosa With. en C. hirsuta L. Gorteria 10:213–219

    Google Scholar 

  • Kolbe JJ, Glor RE, Schettino LRG et al (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    Article  CAS  PubMed  Google Scholar 

  • Kudoh H (2012) Recent expansion of an invasive plant species, Cardamine hirsuta, in Japan. In: Morita T (ed) Natural history of invasive plants—ecology of invasion and disturbance. Hokkaido University Press, Sapporo, pp 127–148 (in Japanese)

    Google Scholar 

  • Kudoh H, Ishiguri Y, Kawano S (1992) Cardamine hirsuta L., a new ruderal species introduced into Japan. J Phytogeogr Taxon 40:85–89

    Google Scholar 

  • Kudoh H, Marhold K, Lihova J (2006) Notes on Cardamine impatiens L., C. flexuosa With., C. hirsuta L. and C. parviflora L. in Japan. Bunrui 6:41–49 (in Japanese with English summary)

    Google Scholar 

  • Kudoh H, Nakayama M, Lihova J, Marhold K (2007) Does invasion involve alternation of germination requirements? A comparative study between native and introduced strains of an annual Brassicaceae, Cardamine hirsuta. Ecol Res 22:869–875

    Article  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Roux JJ, Wieczorek AM, Wright MG, Tran CT (2007) Super-genotype: global monoclonality defies the odds of nature. PLoS One 2:e590

    Article  PubMed  PubMed Central  Google Scholar 

  • Lelong B, Lavoie C, Jodoin Y, Belzile F (2007) Expansion pathways of the exotic common reed (Phragmites australis): a historical and genetic analysis. Divers Distrib 13:430–437

    Article  Google Scholar 

  • Lihova J, Marhold K, Kudoh H, Koch MA (2006) Worldwide phylogeny and biogeography of Cardamine flexuosa (Brassicaceae) and its relatives. Am J Bot 93:1206–1221

    Article  CAS  PubMed  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  • Maki M, Horie S, Yokoyama J (2002) Comparison of genetic diversity between narrowly endemic shrub Menziesia goyozanensis and its widespread congener M. pentandra (Ericaceae). Conserv Genet 3:421–425

    Article  CAS  Google Scholar 

  • Matesanz S, Theiss KE, Holsinger KE, Sultan SE (2014) Genetic diversity and population structure in Polygonum cespitosum: insights to an ongoing plant invasion. PLoS One 9:e93217

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuhashi S, Sakai S, Kudoh H (2012) Temperature-dependent fluctuation of stamen number in Cardamine hirsuta (Brassicaceae). Int J Plant Sci 173:391–398

    Article  Google Scholar 

  • Meimberg H, Milan NF, Karatassiou M et al (2010) Patterns of introduction and adaptation during the invasion of Aegilops triuncialis (Poaceae) into Californian serpentine soils. Mol Ecol 19:5308–5319

    Article  PubMed  Google Scholar 

  • Mergeay J, Verschuren D, De Meester L (2006) Invasion of an asexual American water flea clone throughout Africa and rapid displacement of a native sibling species. Proc R Soc B-Biol Sci 273:2839–2844

    Article  Google Scholar 

  • Moran EV, Alexander JM (2014) Evolutionary responses to global change: lessons from invasive species. Ecol Lett 17:637–649

    Article  PubMed  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data 2. Gene frequency data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Neuffer B, Hurka H (1999) Colonization history and introduction dynamics of Capsella bursa-pastoris (Brassicaceae) in north america: isozymes and quantitative traits. Mol Ecol 8:1667–1681

    Article  PubMed  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:1289–1299

    Article  CAS  Google Scholar 

  • Novak SJ, Mack RN (1993) Genetic variation in Bromus tectorum introduced populations. Heredity 71:167–176

    Article  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population-structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM et al (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. http://www.R-project.org/

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Rosenthal DM, Ramakrishnan AP, Cruzan MB (2008) Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Mol Ecol 17:4657–4669

    Article  PubMed  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Kudoh H (2013) Relative strength of phenotypic selection on the height and number of flowering-stalks in the rosette annual Cardamine hirsuta (Brassicaceae). J Ecol Environ 36:151–158

    Article  Google Scholar 

  • Sax DF, Stachowicz JJ, Brown JH et al (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471

    Article  PubMed  Google Scholar 

  • Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436

    Article  Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102

    Article  Google Scholar 

  • Taberlet P, Griffin S, Goossens B et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhoeven KJF, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc B-Biol Sci 278:2–8

    Article  Google Scholar 

  • Vitousek PM, Dantonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478

    Google Scholar 

  • Wilson JRU, Dormontt EE, Prentis PJ et al (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144

    Article  PubMed  Google Scholar 

  • Yatsu Y, Kachi N, Kudoh H (2003) Ecological distribution and phenology of an invasive species, Cardamine hirsuta L. and its native counterpart, Cardamine flexuosa With., in central Japan. Plant Species Biol 18:35–42

    Article  Google Scholar 

  • Zhang YY, Zhang DY, Barrett SCH (2010) Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Mol Ecol 19:1774–1786

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Makino Herbarium and Tohoku University Herbarium for providing specimen samples; A. Hay, S. Horie, T. Yamada, R. Kikuchi, Y. Sakamoto, N. Matsushima, Y. Suyama, A. Matsuo, T. Kawagoe, and M. Katabuchi for help with genetic experiments and analyses; K. Hikosaka for support with the phytotron; and T. Nakashizuka for field support and comments on the manuscript. This study was supported by Grant-in-Aid for The Japan Society for the Promotion of Science Fellows and partly supported by the Sasakawa Scientific Research Grant from The Japan Science Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeko Matsuhashi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuhashi, S., Kudoh, H., Maki, M. et al. Invasion history of Cardamine hirsuta in Japan inferred from genetic analyses of herbarium specimens and current populations. Biol Invasions 18, 1939–1951 (2016). https://doi.org/10.1007/s10530-016-1139-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1139-9

Keywords

Navigation