Skip to main content

Advertisement

Log in

Diagenetic process as tool to diagnose paleo-environment conditions, bathymetry and oxygenation during Late Paleocene-Early Eocene in the Gafsa Basin

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Late Paleocene–Early Eocene deposits cropping out in Tamerza area were settled on a carbonate homoclinal ramp. Deposits which are ranged in six main facies record a gradual transition from intertidal to upper circatidal environment. Lateral variations in terms of facies and thickness infers to the main role of synsedimentary tectonics. The characterization of paleoenvironments was established in respect to the lithology, fauna content, sedimentary structures and diagenetic features. Detailed analysis of deposits shows that the diagenetic processes are reliable tools to reconstruct each depositional environment. Moreover, they bring out precious information concerning the chemical and physical parameters and the sedimentary dynamics of the studied interval. The early stage cementation is favored under low rates of sedimentation and a calm sea floor. The arrangement and the morphology of crystals permit to appreciate the bathymetry and to better characterize the depositional environment. Phosphogenesis seems in a tight relation with silicification requiring both an acidic environment. The occurrence of upwelling currents engendered the blooming of fauna guarantying test preservation after death and allowed to establish a linkage between fauna content and diagenetic features. Silicification processes concern test replacement and the genesis of chert beds included within the enclosing deposits. Micritization processes, occurring in the inner ramp, advocate calm environments and are engendered by endolithic algae, bacteria and fungi. The X-Ray diffraction shows the frequency of smectites associated with clinoptilolites, sepiolite and palygorskite. The clay paragenesis helps to identify several diagenetic contexts occurring under xeric and confined conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdessalam BN (1978) Etude palynologique et micropaléontologique de la sériephosphatée du bassin de Gafsa-Metlaoui (Tunisie). Application à la compréhension des mécanismes de la phosphatogenese. Ph.D. Thesis. Univ Paris VI, France

  • Adatte T, Lu G (1995) Clay mineral correlation across the Paleocene-Eocene boundary: evidence of global turnover from western to eastern Tethys. In: Geological Society of America 1995, Annual Meeting, New Orleans, USA. Abstract p. 405

  • Ahmed AH, Tlili A, Zalat A, Jeddoui Y (2014) Fossil diatoms from endogangue of the Ypresian phosphatic pellets of the Gafsa-Metlaoui basin: implication on the origin of biogenic silica and depositional environment. J Geosci Arab. https://doi.org/10.1007/s12517-013-1253-2

    Article  Google Scholar 

  • Ali MBH, Kadri A, Zagrarni MF, Gaied M E (2002) Les unités lithostratigraphiques de l’Eocène en Tunisie: Evolution latérale et actualisation de la nomenclature-. Notes du Service Géologique de Tunisie, 69:53–73

  • Assereto R, Folk RL (1980) Diagenetic fabrics of aragonite, calcite, and dolomite in an ancient peritidal-spelean environment: Triassic Calcare Rosso, Lombardia, Italy. J Sediment Res 50(2):371–394

    Google Scholar 

  • Bates NR, Brand U (1990) Secular variations of calcium carbonate mineralogy: an evaluation of ooid and rnicrite chemistries. Geol Rundsch 79:27–46

    Article  Google Scholar 

  • Bathurst RGC (1966) Boring algae, micrite envelopes and lithification of molluscan biosparites. Lpool Munchr Geol 5:89–109

    Google Scholar 

  • Bathurst RGC (1975) Carbonate sediments and their diagenesis. Developments in Sedimentology, vol 12. Elsevier, Amsterdam, p 658

    Google Scholar 

  • Beji-Sassi A, Ouazaa NL, Clocchiatti C (1996) Les inclusions vitreuses des ilménites, apatites et quartz des sédiments phosphatés de Tunisie: témoignages d’un volcanisme alcalin d’Age paléocène supérieur à Eocène. Bull. la Société Géologique Fr 167(2):227–234

    Google Scholar 

  • Beji-Sassi A, Laridhi-Ouzaa N, Zaier A, Clocchiatti R (2001) Paleocene early Eocene alkaline volcanic activity in Tunisia phosphatic sediments. Comparison with Cretaceous magmatic and geodynamic significance. Les Journées l’ETAP 2001(4):47–58

    Google Scholar 

  • Bernoulli D, Gunzenhauser B (2001) A dolomitized diatomite in an Oligocene ± Miocene deep-sea fan succession, Gonfolite Lombarda Group, Northern Italy Sediment. Geology 139:71–91

    Google Scholar 

  • Bjørlykke K, Aagaard P, Egeberg PK, Simmons SP (1995) Geochemical constraints from formation water analyses from the North Sea and the Gulf Coast Basins on quartz, feldspar and illite precipitation in reservoir rocks, vol 86. Geological Society, London, pp 33–50

    Google Scholar 

  • Bolle MP, Adatte T, Keller G, Von Salis K, Burns S (1999) The Paleocene-Eocene transition in the southern Tethys (Tunisia): climatic and environmental fluctuations. Bulletin de la Société Géologique de France 170(5):661–680

    Google Scholar 

  • Budd DA, Perkins RD (1980) Bathymetric zonation and paleoecological significance in Puerto Rican shelf and slope sediments. J Sediment Petrol 50:553–881

    Google Scholar 

  • Burns SJ, McKenzie JA, Vasconcelos C (2000) Dolomite formation and biogeochemical cycles in the Phanerozoic. Sedimentology 47:49–61

    Article  Google Scholar 

  • Burollet PF (1956) Contribution à l’etude stratigraphique de la Tunisie centrale. Ph.D Thesis Paris. Annales des Mines et de la Geologie, Tunis. 18:350

  • Carson GA (1991) Silicification of fossils. In: Allison P, Briggse G (eds) Taphonomy: releasing the date locked in the fossil record. Plenum Press, New York, pp 455–499

    Chapter  Google Scholar 

  • Castany G (1951) Etude géologique de l’Atlas tunisien oriental. Ann. Min. et Géol., Tunisie, 8. Thèse Doct. Ès-Sc., Paris

  • Cayeux L (1935) Les roches sédimentaires de France e Roches carbonatées. Masson and Cie, Paris, p 447

    Google Scholar 

  • Chaabani F (1995) Dynamique de la partie orientale du bassin de Gafsa au crétacé et au paléogène. Etude minéralogique et géochimique de la série phosphatée éocène-Tunisie Méridionale. Ph.D. Thesis. Manar II Univ, Tunisia

  • Chaabani F, Ounis A (2008) Sequence stratigraphy and depositional environment of phosphorite deposits evolution: case of the Gafsa basin, Tunisia. In: Conference Abstract at the International. Geological. Cong. Oslo

  • Christopher SS (2009) Cenozoic stratigraphy of the Sahara, Northern Africa. J Afr Earth Sci 53(3):89–121

    Article  Google Scholar 

  • Clocchiatti R, Sassi S (1972) Découverte de témoins d’un volcanisme paléocène à éocène dans le bassin phosphaté de Métlaoui (Tunisie Méridionale). C.R. Acad Sci Paris 247:513–517

    Google Scholar 

  • Dapples EC (1979) Silica as an agent in diagenesis. In: Larsen G, Chilingar GV (eds) Diagenesis in sediments and sedimentary rocks, developments in sedimentology, vol 25A. Elsevier, Amsterdam, pp 99–141

    Chapter  Google Scholar 

  • De Wever P, Azéma J, Fourcade E (1994) Radiolaires et radiolarites: production primaire, diagenèse et paléogéographie. Bull. Ctr. Rech. Expl.-Prod. Bull. Ctr. Rech. Expl.-Prod. Elf Aquitaine 18:315–379

    Google Scholar 

  • Deconinck J, Chamley H, Beaudoin B, Accarie H, Renard M (1985) Paleoenvironmental and diagnostic significance of Aptian to Eocene clay mineral successions of the Umbria e Marche basin (northern Apennines, Italy). In: Abstract International Conference. Association Internationale Pour l’Etude des Argiles, Strasbourg, 23–28 August 1985

  • Dunham RJ (1962) Classification of carbonate rocks according to their depositional texture. In: Ham WE (ed) Classification of Carbonate Rocksda Symposium: Tulsa, OK, American Association of Petroleum Geologists Memoir 1, pp 108–121

  • El-Saiy AK, Jordan BR (2007) Diagenetic aspects of tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates. J Asian Earth Sci 31(1):35–43

    Article  Google Scholar 

  • Fauconnier D, Slansky M (1980) Relations entre le développement des dinoflagelles et la sédimentaion phosphate deu basin de Gafsa (Tunisie). Bur Rech Geol Min

  • Felhi M (2010) Les niveaux intercalaires de la série yprésienne du bassin Gafsa-Métlaoui: Apports de laminéralogie des argiles et de la géochimie de la matière organique résiduelle à la reconstitution paléoenvironnementale. Ph.D. Thesis, Sfax University, p 184

  • Felhi M, Saidi R, Fattah N, Tlili A (2016) Textural evidences for dissolution of silica-rich rocks of the Ypresian phosphatic series, Gafsa-Metlaoui basin, southwestern Tunisia: implication of biogenic silica supply on genesis of fibrous clays. Arab J Geosci. https://doi.org/10.1007/s12517-016-2735-9

    Article  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin, p 976

    Book  Google Scholar 

  • Folk RL (1959) Practical petrographic classification of limestones. Am Assoc Petrol Geol 43(1):1–38

    Google Scholar 

  • Föllmi KB, Garrison RE, Grimm KA (1991) Stratification in phosphatic sediments: Illustrations from the Neogene of Central California. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and Events in Stratigraphy. Springer, Berlin, pp 492–507

    Google Scholar 

  • Föllmi KB, Badertscher C, De Kaenel E, Stille P, John C, Adatte T, Steinmann P (2005) Phosphogenesis and organic-carbon preservation in the Miocene Monterey Formation at Naples Beach, California—the Monterey hypothesis revisited. Geol Soc Am Bull 117:589–619

    Article  Google Scholar 

  • Fournie D (1978) Nomenclature litho stratigraphique des séries du crétacé supérieur au tertiaire de Tunisie. Bull Cent Rech Prod Elf Aquitaine 2(1):97–148

    Google Scholar 

  • Galfati I, Sassi AB, Zaier A, Bouchardon JL, Bilal E, Joron JL, Sassi S (2010) Geochemistry and mineralogy of Paleocene-Eocene Oum El Khecheb phosphorites (Gafsa-Metlaoui Basin) Tunisia. Geochem J 44:189–210

    Article  Google Scholar 

  • Garnit H, Bouhlel S, Barca D, Chtara C (2012) Application of LA-ICP-MS to sedimentary phosphatic particles from Tunisian phosphorite deposits: insights from trace elements and REE into paleo-depositional environments. Chemie der Erde-Geochemistry 72(2):127–139

    Article  Google Scholar 

  • Gbadeyan R, Dix GR (2013) The role of regional and local structure in a Late Ordovician (Edenian) foreland platform-to-basin succession inboard of the Taconic Orogen, Central Canada. Geosciences 3(2):216–239

    Article  Google Scholar 

  • Henchiri M (2007) Sedimentation, depositional environment and diagenesis of Eocene biosiliceous deposits in Gafsa basin, southern Tunisia. J Afr Earth Sci 49:187–200

    Article  Google Scholar 

  • Henchiri M, Fattah N (2013) Extent of diagenetic transformations in severely altered biogenic silica deposits from Tunisia: new insights from mineralogy and geochemistry. Arab J Geosci. https://doi.org/10.1007/s12517-012-0827-8

    Article  Google Scholar 

  • Henchiri M, Slim-S’himi N (2006) Silicification of sulfate evaporites and their carbonate replacements in Eocene marine sedimentary rocks, Tunisia: two diagenetic trends. Sedimentology 53:1135–1159

    Article  Google Scholar 

  • Hsü KJ, Siegenthaler C (1969) Preliminary experiments on hydrodynamic movements induced by evaporation and their bearing on the dolomite problem. Sedimentology 12:11–25

    Article  Google Scholar 

  • Humphrey JD (1988) Late Pleistocene mixing zone dolomitization, southeastern Barbados, West Indies. Sedimentology 35(2):327–348

    Article  Google Scholar 

  • Jacka A (1974) Replacement of fossil by length slow chalcedony and associated dolomitization. J Sediment Petrol 41:1045–1058

    Google Scholar 

  • Jamoussi F, Bedir M, Boukadi N, Kharbachi S, Zargouni F, Lopez-Galindo A, Paquet H (2003) Clay mineralogical distribution and tectono-eustatic control in the Tunisian margin basins. Comptes rendus Geosciences 335:175–183

    Article  Google Scholar 

  • Jarvis I (1980) Geochemistry of phosphatic chalks and hardgrounds from the Santonian to early Campanian (Cretaceous) of northern France. J Geol Soc London 137:705–721

    Article  Google Scholar 

  • Karoui-Yaakoub N (2006) Effet du réchauffement climatique global sur le comportement des foraminifères benthiques de l’intervalle de passage Paléocène—Eocène de la coupe d’Elles (Tunisie). Rev Paléobiologie Genève 25(2):575–591

    Google Scholar 

  • Karoui-Yaakoub N, M’barek-Jemaï BM, Cherni R (2001) Le passage Paléocène/Eocène au nord de la Tunisie (Jebel Kharouba): foraminifères planctoniques, minéralogie et environnement de dépôt. Rev Paléobiologie Genève 30(1):105–121

    Google Scholar 

  • Kobluk DR, Risk MJ (1977) Calcification of exposed filaments of endolittic algae, micrite envelope formation and sediment production. J Sediment Petrol 47(5):17–528

    Google Scholar 

  • Kocsis L, Ounis A, Chaabani F, Salah NM (2013) Paleoenvironmental conditions and strontium isotope stratigraphy in the Paleogene Gafsa Basin (Tunisia) deduced from geochemical analyses of phosphatic fossils. Int J Earth Sci 102:1111–1129

    Article  Google Scholar 

  • Kocsis L, Ounis A, Baumgartner C, Pirkenseer C, Harding I, Adatte A, Chaabani F, Salah MN (2014) Paleocene-Eocene palaeoenvironmental conditions of the main phosphorite deposits (Chouabine Formation) in the Gafsa Basin, Tunisia. J Afr Earth Sci 100(2014):586–597

    Article  Google Scholar 

  • Land LS, Moore CH (1980) Lithification, micritization and syndepositional diagenesis of biolithites on the Jamaican island slope. J Sediment Res 50(2):357–369

    Google Scholar 

  • Longman NW (1980) Carbonate diagenetic textures from near-surface diagenetic environements. Am Assoc Petrol Geol 64:461–487

    Google Scholar 

  • Loope DB, Watkins DK (1989) Pennsylvanian fossils replaced by red chert: early oxidation of pyritic precursors. J Sediment Petrol 59:375–386

    Google Scholar 

  • Madden RHC, Wilson MEJ (2013) Diagenesis of a SE Asian Cenozoic carbonate platform margin and its adjacent basinal deposits. Sed Geol 286–287:20–38

    Article  Google Scholar 

  • Mardassi-Hafsia B (2004) Les facies micritiques producteurs d’hydrocarbures dans l’éocène inferieur de Tunisie Centro-septentrionale et leur transition vers les facies de plateforme. Sédimentation, Diagenèse et Aspect réservoir. Ph.D. Thesis. Manar II Univ., Tunisia

  • Melas P (1982) Etude sédimentologique, paléogéographique et géochimique du Lias Carbonate du Nord- Lodévois. Application à la reconnaissance et à l’interprétation d’amas métallifères. Ph.D. Thesis. Montpellier 2 Univ, France

  • Messadi AM (2014) Caractères sédimentaires et stratigraphie évènementielle des dépôts de l’intervalle Paléocène-Eocène dans la région de Tamerza. Master, Manar II Univ., Tunisia

  • Messadi AM, Mardassi B, Ouali JA, Touir J (2016) Sedimentology, diagenesis, clay mineralogy and sequential analysis model of Upper Paleocene evaporite-carbonate ramp succession from Tamerza area (Gafsa Basin: Southern Tunisia). J Afr Earth Sci 118:205–230

    Article  Google Scholar 

  • Moody RTG, Sandman RI, Finch EM (1992) The Ypresian Lutetian boudary onshore Tunisia, and its offshore analogue. E.T.A.P.; Actes des IIIème Journées de géologie tunisienne appliquée à la recherche des hydrocarbures, pp. 181–191

  • Moore CH (1989) Carbonate diagenesis and porosity, vol 46. Elsevier, Amsterdam

    Book  Google Scholar 

  • M’Rabet A (1981) Stratigraphie, sédimentation et diagenèse carbonatée des séries du Crétacé inferieur de Tunisie Centrale. Ph.D. Thesis. Paris-Sud centre d’Orsay Univ., France

  • Ounis A, Kocsis L, Chaabani F, Pfeifer H (2008) Rare earth element and stable isotope geochemistry (d13C and d18O) of phosphorite deposits in the Gafsa Basin, Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 268(1–2):1–18. https://doi.org/10.1016/j.palaeo.2008.07.005

    Article  Google Scholar 

  • Perry CT (1998) Grain susceptibility to the effects of microboring: implications for the preservation of skeletal carbonates. Sedimentology 45:39–51

    Article  Google Scholar 

  • Perry CT (1999) Biofilm-related calcification, sediment trapping and constructive micrite envelopes: a criterion of ancient grass-bed environments? Sedimentology 46:33–46

    Article  Google Scholar 

  • Perry CT, Bertling M (2000) Spatial and temporal patterns of macroboring within Mesozoic and Cenozoic coral reef systems. In: Insalaco E, Skelton E, Palmer TJ (eds) Carbonate platform systems: components and interactions, vol 178. Geological Society of London, London, pp 33–50

    Google Scholar 

  • Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth Sci Rev 86:106–144

    Article  Google Scholar 

  • Perry CT, Macdonald IA (2002) Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 186:101–113

    Article  Google Scholar 

  • Purser BH (1978) Early diagenesis and the preservation of porosity in Jurassic limestones. J Pet Geol 1:83–94

    Article  Google Scholar 

  • Purser BH (1980) Sédimentation et diagenèse des carbonates néritiques récents. I. Ed. Technip, p 366

  • Reid RP, Macintyre IG (2000) Microboring versus recrystallization: further insight into the micritization process. J Sediment Res 70:24–28

    Article  Google Scholar 

  • Robert C, Chamley H (1991) Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments. Glob Planet Change 89:315–332

    Article  Google Scholar 

  • Sassi S (1974) La sédimentation phosphatée au Paléocène dans le Sud et le Centre Ouest de la Tunisie. Ph.D. Thesis. Paris Univ, France

  • Schieber J (1996) Early diagenetic silica deposition in algal cysts and spores; a source of sand in black shales? J Sediment Res 66:175–183

    Google Scholar 

  • Sibley DF, Gregg JM (1987) Classification of dolomite rock textures. J Sediment Petrol 57:967–975

    Google Scholar 

  • Slansky M (1980) Géologie des phosphates sédimentaires. Mémoire du Bureau de recherches géologiques Minières; n°92 pp114

  • Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damste JS, Dickens GR, Huber M, Reichart GJ, Stein R, Matthiessen J, Lourens LJ, Pedentchouk N, Backman J, Moran K, The Expedition 302 Scientists (2006) Subtropical arctic ocean temperatures during the paleocene/eocene thermal maximum. Nat. Camb. 441(1):610–613

    Article  Google Scholar 

  • Soudry D, Glenn CR, Nathan Y, Segal I, VonderHaar D (2006) Evolution of Tethyan phosphogenesis along the northern edges of the Arabian-African shield during the Cretaceous-Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth Sci Rev 78:27–57

    Article  Google Scholar 

  • Swett K, Crowder K (1982) Primary phosphatic oolites from the Lower Cambrian of Spitsbergen. J Sediment Petrol 52:587–593

    Google Scholar 

  • Swinchatt JP (1965) Significance of constituent composition, texture, and skeletal breakdown in some recent carbonate sediments. J Sediment Petrol 35:71–90

    Google Scholar 

  • Tlili A, Felhi M, Montacer M (2010) Origin and depositional environment of palygorskite and sepiolite from the Ypresian phosphatic series, Southwestern Tunisia. Clay Clay Min 58:573–658

    Article  Google Scholar 

  • Tlili A, Felhi M, Montacer M (2011) Mineralogical and geochemical studies of Ypresian marly clays and silica rocks of phosphatic series, Gafsa-Metlaoui basin, southwestern Tunisia implication for depositional environment. Geosciences J 15(1):53–64

    Article  Google Scholar 

  • Tucker ME, Bathurst RGC (1990) Carbonate diagenesis. Wiley, Hoboken p, p 312

    Book  Google Scholar 

  • Tucker ME, Wright PV, Dicckson JAD (1990) Carbonate Sedimentology. Wiley, Hoboken, p 482

    Book  Google Scholar 

  • Warren JK (2006) EvaporitesdSediments, resources, and hydrocarbons. Springer, New York, p 1035

    Book  Google Scholar 

  • Williams LA, Crerar DA (1985) Silica diagenesis, II. General mechanisms. J Sediment Petrol 55:312–321

    Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer Verlag, New York

    Book  Google Scholar 

  • Zachos J, Stott L, Lohmann K (1994) Evolution of early Cenozoic marine temperatures. Paleoceanography 9(2):353–387

    Article  Google Scholar 

  • Zaier A, Beji-Sassi A, Sassi S, Moody RTJ (1998) Basin evolution and deposition during the Early Paleogene in Tunisia. In: Maggregor DS, Moody RTJ, Clark- Lowes DD (eds) Petroleum geology of North Africa. Geological Society, London, pp 375–393 Special Publication, 123

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the personnel of the Civil Engineering department at National Engineering School of Sfax (ENIS), the Physics Department of the Faculty of Science of Bizerte and the personnel of the Higher Institute of Biotechnology of Sfax for their technical support. I am grateful to A. Pearson and L. le-callonnec for the constructive discussions in the silica dissolution and preservation. We are also grateful to the anonymous reviewers and to the editor for the constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Majid Messadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messadi, A.M., Mardassi, B., Ouali, J.A. et al. Diagenetic process as tool to diagnose paleo-environment conditions, bathymetry and oxygenation during Late Paleocene-Early Eocene in the Gafsa Basin. Carbonates Evaporites 34, 893–908 (2019). https://doi.org/10.1007/s13146-018-0424-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-018-0424-3

Keywords

Navigation