Skip to main content
Log in

On the Correlation between Convective Plume Updrafts and Downdrafts, Lidar Reflectivity and Depolarization Ratio

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

An Erratum to this article was published on 06 September 2007

Abstract

We question the correlation between vertical velocity (w) on the one hand and the occurrence of convective plumes in lidar reflectivity (i.e. range corrected backscatter signal Pz 2) and depolarization ratio (Δ) on the other hand in the convective boundary layer (CBL). Thermal vertical motion is directly investigated using vertical velocities measured by a ground-based Doppler lidar operating at 2 μm. This lidar provides also simultaneous measurements of lidar reflectivity. In addition, a second lidar 200 m away provides reflectivities at 0.53 and 1 μm and depolarization ratio at 0.53 μm. The time series from the two lidars are analyzed in terms of linear correlation coefficient (ρ). The main result is that the plume-like structures provided by lidar reflectivity within the CBL as well as the CBL height are not a clear signature of updrafts. It is shown that the lidar reflectivity within the CBL is frequently anti-correlated (ρ (w, Pz 2 )) with the vertical velocity. On the contrary, the correlation coefficient between the depolarization ratio and the vertical velocity ρ (w, Δ ) is always positive, showing that the depolarization ratio is a fair tracer of updrafts. The importance of relative humidity on the correlation coefficient is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas D, Walter B, Chou SH and Sheu PJ (1986). The structure of the unstable marine boundary layer viewed by lidar and aircraft observations. J Atmos Sci 43: 1301–1318

    Article  Google Scholar 

  • Ayotte KW, Sullivan PS, Dndrén A, Doney SC, Holstlag AAM, Large WG, McWillimas JC, Moeng C-H, Otte MJ, Tribbia JJ and Wyngaard JC (1996). An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations. Boundary-Layer Meteorol 79: 131–175

    Article  Google Scholar 

  • Boers R, Eloranta EW, Coulter RL (1984) Lidar observations of mixed layer dynamics: tests of parameterized entrainment models of mixed layer growth rate. J Clim Appl Meteor 23:247–266

    Article  Google Scholar 

  • Bruneau D, Le Rille O, Pelon J (2000) Wind velocity and backscatter measurements at 2 μm with the heterodyne detection lidar EMIL. Proceedings of the 20th ILRC, Vichy, France, pp 97–100

  • Chazette P, Randriamiarisoa H, Sanak J, Couvert P and Flamant C (2005). Optical properties of urban aerosol from airborne and ground-based in situ measurements performed during the Etude et Simulation de la Qualité de l’air en Ile de France (ESQUIF) program. J Geophys Res 110: D02206, doi: 10.1029/2004JD004810.

    Article  Google Scholar 

  • Crum TD, Stull RB and Eloranta EW (1987). Coincident lidar and aircraft observations of entrainment into thermals and mixed layers. J Clim Appl Meteorol 26: 774–788

    Article  Google Scholar 

  • D’Almeida GA, Koepke P, Shettle PE (1991) Atmospheric aerosols: global climatology and radiative characteristics. Deepak Publications, Hampton, 561 pp

  • Dubovik O and King MD (2000). A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105: 20673–20696

    Article  Google Scholar 

  • Dupont E, Pelon J and Flamant C (1994). Study of the moist convective boundary layer structure by backscattering lidar. Boundary-Layer Meteorol 69: 1–25

    Article  Google Scholar 

  • Fitzgerald JW (1989). Model of the aerosol extinction profile in a well-mixed marine boundary layer. Appl Opt 28: 3534–3538

    Article  Google Scholar 

  • Frehlich R, Hannon SM and Henderson SW (1998). Coherent Doppler Lidar measurements of wind field statistics. Boundary-Layer Meteorol 86: 233–256

    Article  Google Scholar 

  • Gibert F, Flamant PH, Bruneau D and Loth C (2006). Two-micrometer heterodyne differential absorption Lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer. Appl Opt 45: 4448–4458

    Article  Google Scholar 

  • Grossman RL (1984) Bivariate conditional sampling of moisture flux over a tropical ocean. J Atmos Sci 41:3238–3253

    Article  Google Scholar 

  • Hänel G (1976). The properties of atmospheric aerosol particles as functions of the Relative humidity at thermodynamic equilibrium with the surrounding moist air. Adv Geophys 19: 73–188

    Google Scholar 

  • Holben BN, Eck FT, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I and Smirnov A (1998). AERONET— a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66: 1–16

    Article  Google Scholar 

  • Kaimal JC, Wyngaard JC, Haugen DA, Coté OR, Izumi Y, Caughey SJ and Readings CJ (1976). Turbulence structure in the convective boundary layer. J Atmos Sci 33: 2152–2169

    Article  Google Scholar 

  • Kiemle C, Kästner M and Ehret G (1995). The convective boundary layer structure from lidar and radiosonde measurements during the EFEDA ’91 Campaign. J Atmos Ocean Technologic 12: 771–782

    Article  Google Scholar 

  • Kiemle C, Ehret G, Davis KJ, Lenschow DH and Oncley SP (1998). Airborne water vapor differential absorption lidar studies of the convective boundary layer. In: PLanet, EJ, Federovich, EE, Viegas, DX, and Wyngaard, JC (eds) Buoyant convection in geophysical flows, pp 207–238. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kunkel KE, Eloranta EW and Shipley ST (1977). Lidar observations of the convective boundary layer. J App Meteorol 16: 1306–1311

    Article  Google Scholar 

  • Lenschow DH and Stephens PL (1980). The role of thermals in the convective boundary layer. Boundary-Layer Meteorol 19: 509–532

    Article  Google Scholar 

  • Loth C, Cuesta J Flamant PH (2004) TReSS: a transportable remote sensing station for atmospheric research and satellite validation. Proceedings of the 22nd ILRC, vol 1, Matera, Italy, pp 41–44

  • Mätzler C (2002) MATLAB functions for Mie scattering and absorption, version 2—group of 5’, IAP Research Report No. 2002-11.

  • Marsik FJ, Fischdr KW, McDonald TD and Samson FJ (1995). Comparisons of methods for estimating mixing height used during the 1992 Atlanta field intensive. J Appl Meteorol 34: 1802–1814

    Article  Google Scholar 

  • McNeil WR and Carswell AI (1975). Lidar polarization studies of the troposphere. Appl. Opt 14: 2158–2168

    Google Scholar 

  • Melfi SH, Spinhirne JD and Chou S-H (1985). Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J Clim Appl Meteorol 24: 806–821

    Article  Google Scholar 

  • Menut L, Flamant C, Pelon J and Flamant PH (1999). Urban boundary layer height determination from Lidar measurements over the Paris area. Appl Opt 38: 945–954

    Google Scholar 

  • Moeng C-H (1998). Parameterizations of the convective boundary layer in atmospheric models. In: PLanet, EJ, Federovich, EE, Viegas, DX and Wygaard, JC (eds) Buoyant convection in geophysical flows, pp 291–311. Kluwer Academinc Publishers, Dordrecht

    Google Scholar 

  • Murayama T, Furushima M, Oda A, Iwasaka N and Kai K (1996). Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo. J Meteorol Soc of Japan 74(4): 571–578

    Google Scholar 

  • Randriamiarisoa H, Chazette P, Couvert P and Sanak J (2005). Relative humidity impact on aerosol parameters in a Paris suburban area. Atmos Chem Phys Discuss 5: 8091–8147

    Article  Google Scholar 

  • Rechou A and Durand P (1997). Conditional sampling and scale analysis of the marine atmospheric mixed layer—SOFIA experiment. Boundary-Layer Meteorol 82: 81–104

    Article  Google Scholar 

  • Rye BJ and Hardesty RM (1993). Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: spectral accumulation and the Cramer-Rao lower bound. IEEE Trans Geos Rem Sens 31: 16

    Article  Google Scholar 

  • Rye BJ and Hardesty RM (1997). Estimate optimisation parameters for incoherent backscatter heterodyne lidar. Appl Opt 36: 9425–9436

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Springer, New York

    Google Scholar 

  • Wandiger U, Linné H, Bösenberg J, Zeromskis E, Althausen D, Müller D (2004) Turbulent aerosol fluxes determined from combined observations with Doppler wind and Raman aerosol Lidar. Proceedings of the 22nd ILRC, vol 2, Matera, Italy, pp 743–746

  • Wilczak JM and Tillman JE (1980). The three-dimensional structure of convection in the atmospheric surface layer. J Atmos Sci 37: 2424–2443

    Article  Google Scholar 

  • Yano J-I, Redelsperger J-L, Guichard F and Bechtold P (2005). Mode decomposition as a methodology for developing convective-scale representations in global models. Quart J Roy Meteorol Soc 131: 2313–2336

    Article  Google Scholar 

  • Young GS (1988). Turbulence structure of the convective boundary layer. Part II: Phoenix 78 Aircraft observations of thermals and their environment. J Atmos Sci 45: 727–735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Gibert.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10546-007-9223-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibert, F., Cuesta, J., Yano, JI. et al. On the Correlation between Convective Plume Updrafts and Downdrafts, Lidar Reflectivity and Depolarization Ratio. Boundary-Layer Meteorol 125, 553–573 (2007). https://doi.org/10.1007/s10546-007-9205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-007-9205-6

Keywords

Navigation