Skip to main content
Log in

Winter Lake Breezes near the Great Salt Lake

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Case studies of lake breezes during wintertime cold air pools in Utah’s Salt Lake Valley are examined. While summer breezes originating from the Great Salt Lake are typically deeper, of longer duration, and have higher wind speeds than winter breezes, the rate of inland penetration and cross-frontal temperature differences can be higher during the winter. The characteristics of winter breezes and the forcing mechanisms controlling them (e.g., snow cover, background flow, vertical stability profile, clouds, lake temperature, lake sheltering, and drainage pooling) are more complex and variable than those evident in summer. During the afternoon in the Salt Lake Valley, these lake breezes can lead to elevated pollution levels due to the transport of fine particle pollutants from over the Great Salt Lake, decreased vertical mixing depth, and increased vertical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alcott TI, Steenburgh WJ, Laird NF (2012) Great Salt Lake precipitation: observed frequency, characteristics and associated environmental factors. Weather Forecast 27:954–971

    Article  Google Scholar 

  • Alcott TI, Steenburgh WJ (2013) Orographic influences on a Great Salt Lake-Effect snowstorm. Mon Weather Rev 141:2432–2450

    Article  Google Scholar 

  • Alpert P, Neumann J (1983) A simulation of Lake Michigan’s winter land breeze on 7 Nov. 1978. Mon Weather Rev 111:1873–1881

    Article  Google Scholar 

  • Arens S, Harper K (2013) 2012 Utah Ozone Study. Utah Division of Air Quality Technical Report

  • Atkins NT, Wakimoto RM, Weckwerth TM (1995) Observations of the sea-breeze front during CaPE. Part II: Dual-doppler and aircraft analysis. Mon Weather Rev 123:944–969

    Article  Google Scholar 

  • Azorin-Molina C, Tijm S, Ebert EE, Vicente-Serrano SM, Estrela MJ (2014) Sea breeze thunderstorms in the eastern Iberian Peninsula. Neighborhood verification of HIRLAM and HARMONIE precipitation forecasts. Atmos Res 139:101–115

    Article  Google Scholar 

  • Chen TC, Yen MC, Tsay JD, Liao C, Takle ES (2014) Impact of afternoon thunderstorms on the land-sea breeze in the Taipei Basin during summer: an experiment. J Appl Meteorol Climatol 53:1714–1738

    Article  Google Scholar 

  • Chen G, Zhu X, Sha W, Iwasaki T, Seko H, Saito K, Iwai H, Ishii S (2015) Toward improved forecasts of sea-breeze horizontal convective rolls at super high resolutions. Part I: Configuration and verification of a Down-Scaling Simulation System (DS3). Mon Weather Rev 143:1849–1872

    Article  Google Scholar 

  • Crosman E, Horel J (2009) Remote sensing of the surface temperature of the Great Salt Lake. Remote Sens Environ 113:73–81

    Article  Google Scholar 

  • Crosman E, Horel J (2010) Sea and lake breezes: a review of numerical studies. Boundary-Layer Meteorol 137:1–29

    Article  Google Scholar 

  • Crosman E, Horel J (2012) Idealized large-eddy simulations of sea and lake breezes: sensitivity to lake diameter, heat flux, and stability. Boundary-Layer Meteorol 144:309–328

    Article  Google Scholar 

  • Cuxart J, Jiménez MA, Prtenjak TM, Grisogono B (2014) Study of a sea-breeze case through momentum, temperature, and turbulence budgets. J Appl Meteorol Climatol 53:2589–2609

    Article  Google Scholar 

  • Drobinski P, Bastin S, Dabas AM, Delville P, Reitebuch O (2006) Variability of the three-dimensional sea-breeze structure in southeastern France: observations and evaluation of empirical scaling laws. Ann Geophys 24:1783–1799

    Article  Google Scholar 

  • Eastman R, Warren SG (2014) Diurnal cycles of cumulus, cumulonimbus, stratus, stratocumulus, and fog from surface observations over land and ocean. J Clim 27:2386–2404

    Article  Google Scholar 

  • Ferretti R, Mastrantonio G, Argentini S, Santoleri R, Viola A (2003) A model-aided investigation of winter thermally driven circulation on the Italian Tyrrhenian coast: a case study. Geophys Res Atmos 108:4777

    Article  Google Scholar 

  • Giovannini L, Laiti L, Zardi D, de Franceschi M (2015) Climatological characteristics of the Ora del Garda wind in the Alps. Int J Climatol 35(14):4103–4115. doi:10.1002/joc.4270

    Article  Google Scholar 

  • Grim JA, Knievel JC, Crosman ET (2013) Techniques for using MODIS data to remotely sense lake water surface temperatures. J Atmos Ocean Technol 30:2434–2451

    Article  Google Scholar 

  • Gorski G, Strong C, Good SP, Bares R, Ehleringer JR, Bowen GJ (2015) Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere. Proc Nat Acad Sci. doi:10.1073/pnas.1424728112

  • Harris L, Kotamarthi VR (1995) The characteristics of the Chicago lake breeze and its effects on trace particle Transport: Results from an episodic event simulation. J Appl Meteorol 44:1637–1654

    Article  Google Scholar 

  • Hayden KL, Sills DML, Brook JR, Li SM, Makar PA, Markovic MZ, Liu P, Anlauf KG, O’Brien JM, Li Q, McLaren R (2011) Aircraft study of the impact of lake-breeze circulations on trace gases and particles during BAQS-Met 2007. Atmos Chem Phys Discuss 11:11497–11546

    Article  Google Scholar 

  • Hill G (1988) Fog effect of the Great Salt Lake. J Appl Meteorol 27:778–783

    Article  Google Scholar 

  • Hill CM, Fitzpatrick PJ, Corbin JH, Lau YH, Bhate SK (2010) Summertime precipitation regimes associated with the sea breeze and land breeze in southern Mississippi and eastern Louisiana. Weather Forecast 25:1755–1779

    Article  Google Scholar 

  • Horel J, Splitt M, Dunn L, Pechmann J, White B, Ciliberti C, Lazarus S, Slemmer J, Zaff D, Burks J (2002) Mesowest: cooperative mesonets in the western United States. Bull Am Meteorol Soc 83:211–225

    Article  Google Scholar 

  • Keeler JM, Kristovich DAR (2012) Observations of urban heat island influence on lake-breeze frontal movement. J Appl Meteorol Climatol 51:702–710

    Article  Google Scholar 

  • Kuprov R, Eatough DJ, Cruickshank T, Olson N, Cropper PM, Hansen JC (2014) Composition and secondary formation of fine particulate matter in the Salt Lake Valley: Winter 2009. J Air Waste Manag Assoc 64:957–969

    Article  Google Scholar 

  • Laird NF, Kristovich DAR, Liang XZ, Arritt RW, Labas K (2001) Lake Michigan lake breezes: climatology, local forcing, and synoptic environment. J Appl Meteorol 40:409–424

    Article  Google Scholar 

  • Lareau NP, Crosman E, Whiteman CD, Horel JD, Hoch SW, Brown WOJ, Horst TW (2013) The persistent cold-air pool study. Bull Am Meteorol Soc 94:51–63

    Article  Google Scholar 

  • Lareau NP, Horel JD (2015a) Turbulent erosion of persistent cold-air pools: numerical simulations. J Atmos Sci 72:1409–1427

    Article  Google Scholar 

  • Lareau NP, Horel JD (2015b) Dynamically induced displacements of a persistent cold-air pool. Boundary-Layer Meteorol 154:291–316

    Article  Google Scholar 

  • Levy I, Dayan U, Mahrer Y (2008) A five-year study of coastal recirculation and its effect on air pollutants over the east Mediterranean region. J Geophys Res 113:D16121

    Article  Google Scholar 

  • Lu W, Zhong S (2014) A numerical study of a persistent cold air pool episode in the Salt Lake Valley, Utah. J Geophys Res Atmos 119:1733–1752

    Article  Google Scholar 

  • Mazon J, Niemela S, Pino D, Savijarvi H (2015): Snow bands over the Gulf of Finland in wintertime. Tellus AS.l:1600-0870

  • McGowan HA, Owens IF, Sturman AP (1995) Thermal and dynamic characteristics of alpine lake breezes, Lake Tekapo, New Zealand. Boundary-Layer Meteorol 76:3–24

    Article  Google Scholar 

  • Miao JF, Wyser K, Chen D, Ritchie H (2009) Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics. Ann Geophys 27:2303–2320

    Article  Google Scholar 

  • Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys 41:1011

    Article  Google Scholar 

  • Neemann EM, Crosman ET, Horel JD, Avey L (2015) Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah. Atmos Chem Phys 15:135–151

    Article  Google Scholar 

  • Ogawa S, Sha W, Iwasaki T (2003) A numerical study of the interaction of a sea-breeze front with convective cells in the daytime boundary layer. J Meteorol Soc Jpn 81:635–651

    Article  Google Scholar 

  • Pinto JO, Parsons DB, Brown WOJ, Cohn S, Chamberlain N, Morley B (2006) Coevolution of down-valley flow and the nocturnal boundary layer in complex terrain. J Appl Meteorol Climatol 45:1429–1449

    Article  Google Scholar 

  • Reible DD, Simpson JE, Linden PF (1993) The sea breeze and gravity-current frontogenesis. Q J R Meteorol Soc 119:1–16

    Article  Google Scholar 

  • Schoenberger LM (1984) Doppler radar observation of a land-breeze cold front. Mon Weather Rev 112:2455–2464

    Article  Google Scholar 

  • Segal M, Kubesh R (1996) Inferring snow-breeze characteristics from frozen-lake breezes. J Appl Meteorol 35:1033–1039

    Article  Google Scholar 

  • Seigel R (2014) Shallow cumulus mixing and subcloud-layer responses to variations in aerosol loading. J Atmos Sci 71:2581–2603

    Article  Google Scholar 

  • Silcox GD, Kelly KE, Crosman ET, Whiteman CD, Allen B (2012) Wintertime PM\(_{2.5 }\) concentrations in Utah’s Salt Lake Valley during persistent, multi-day cold-air pools. Atmos Environ 46:17–24

    Google Scholar 

  • Sills DML, Brook JR, Levy I, Makar PA, Zhang J, Taylor PA (2011) Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007. Atmos Chem Phys 11:7955–7973

    Article  Google Scholar 

  • Thompson G, Eidhammer T (2014) A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J Atmos Sci 71:3636–3658

    Article  Google Scholar 

  • Tsujimoto K, Koike T (2013) Land-lake breezes at low latitudes: the case of Tonle Sap Lake in Cambodia. J Geophys Res Atmos 118:6970–6980

    Article  Google Scholar 

  • VanCuren R, Pederson J, Lashgari A, Dolislager L, McCauley E (2012) Aerosol generation and circulation in the shore zone of a large alpine lake—2–Aerosol distributions over Lake Tahoe, CA. Atmos Environ 46:631–644

    Article  Google Scholar 

  • Whiteman CD, Hoch SW, Horel JD, Charland A (2014) Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmos Environ 94:742–753

    Article  Google Scholar 

  • Yeager KN, Steenburgh WJ, Alcott TI (2013) Contributions of lake-effect periods to the cool-season hydroclimate of the Great Salt Lake Basin. J Appl Meteorol Climatol 52:341–362

    Article  Google Scholar 

  • Young JS, Whiteman CD (2015) Laser ceilometer investigation of persistent wintertime cold-air pools in Utah’s Salt Lake Valley. J Appl Meteorol Climatol 54:752–765

    Article  Google Scholar 

  • Yoshikado H, Tsuchida M (1996) High levels of winter air pollution under the influence of the urban heat island along the shore of Tokyo bay. J Appl Meteorol 35:1804–1813

    Article  Google Scholar 

  • Zumpfe DE, Horel JD (2007) Lake-breeze fronts in the Salt Lake Valley. J Appl Meteorol Climatol 46:196–211

    Article  Google Scholar 

Download references

Acknowledgments

The National Center for Atmospheric Research Earth Observing Laboratory provided field/data processing support through their Integrated Sounding System and Integrated Surface Flux System groups. We thank Professor C. David Whiteman leading the Persistent Cold Air Pool Study and the 50 local volunteers who participated in the study. We also thank the Utah Division of Air Quality for providing air quality data. We appreciate the invaluable time-height profile data and valuable comments provided by Neil Lareau and the mini-sodar data provided by Sebastian Hoch. We thank Larry Dunn and Randy Graham at the Salt Lake City National Weather Service and Professor Jim Steenburgh for valuable discussions. This research is supported primarily by grant ATM-0938397 and secondarily by ATM-0802282 from the National Science Foundation (NSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik T. Crosman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crosman, E.T., Horel, J.D. Winter Lake Breezes near the Great Salt Lake. Boundary-Layer Meteorol 159, 439–464 (2016). https://doi.org/10.1007/s10546-015-0117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0117-6

Keywords

Navigation