Skip to main content
Log in

Modelling the Arctic Stable Boundary Layer and its Coupling to the Surface

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The impact of coupling the atmosphere to the surface energy balance is examined for the stable boundary layer, as an extension of the first GABLS (GEWEX Atmospheric Boundary-Layer Study) one-dimensional model intercomparison. This coupling is of major importance for the stable boundary-layer structure and its development because coupling enables a realistic physical description of the interdependence of the surface temperature and the surface sensible heat flux. In the present case, the incorporation of a surface energy budget results in stronger cooling (surface decoupling), and a more stable and less deep boundary layer. The proper representation of this is a problematic feature in large-scale numerical weather prediction and climate models. To account for the upward heat flux from the ice surface beneath, we solve the diffusion equation for heat in the underlying ice as a first alternative. In that case, we find a clear impact of the vertical resolution in the underlying ice on boundary-layer development: coarse vertical resolution in the ice results in stronger surface cooling than for fine resolution. Therefore, because of this impact on stable boundary-layer development, the discretization in the underlying medium needs special attention in numerical modelling studies of the nighttime boundary layer. As a second alternative, a bulk conductance layer with stagnant air near the surface is added. The stable boundary-layer development appears to depend heavily on the bulk conductance of the stagnant air layer. This result re-emphasizes the fact that the interaction with the surface needs special attention in stable boundary-layer studies. Furthermore, we perform sensitivity studies to atmospheric resolution, the length-scale formulation and the impact of radiation divergence on stable boundary-layer structure for weak windy conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andre J.C. and Mahrt L. (1982). ‘The Nocturnal Surface Inversion and Influence of Clear-air Radiative Cooling’. J. Atmos. Sci. 39: 864–878

    Article  Google Scholar 

  • Beare, R. J., MacVean, M. K., Holtslag, A. A. M., Cuxart, J., Golaz, J. C., Jimenez, M. A., Khairoutdinov, M., Kosovic, B., Lewellen, D., Lund, T. S., Lundquist, J. K., McCabe, A., Moene, A. F., Noh, Y., Raasch S., and Sullivan, P. P.: 2006 , ‘An Intercomparison of Large-eddy Simulations in the Stable Boundary-Layer’. Boundary-Layer Meteorol., in press.

  • Beljaars A.C.M. and Holtslag A.A.M. (1991). ‘Flux Parameterization over Land Surfaces for Atmospheric Models’. J. Appl. Meteorol. 30: 327–341

    Article  Google Scholar 

  • Beljaars A.C.M. and Bosveld F.C. (1997). ‘Cabauw Data for Validation of Land Surface Parametrization Schemes’. J. Climate 10: 1172–1193

    Article  Google Scholar 

  • Beljaars A.C.M. and Viterbo P. (1998). ‘Role of the Boundary Layer in a Numerical Weather Prediction Model’. In: (eds) Clear and Cloudy Boundary Layers, pp 372. Royal Netherlands Academy of Arts and Sciences, Amsterdam

    Google Scholar 

  • Best M.J. (1998). ‘A Model to Predict Surface Temperatures’. Boundary-Layer Meteorol 88: 279–306

    Article  Google Scholar 

  • Beyrich F. (1997). ‘Mixing Height Estimation from Sodar Data- A Critical Discussion’. Atmos. Environ. 31: 3941–3953

    Article  Google Scholar 

  • Beyrich F., Meijninger W.M.L., Schipper J.W., Lohse H. and Bruin H.A.R. (2002). ‘Results from One-Year Continuous Operation of a Large Aperture Scintillometer over a Heterogeneous Land Surface’. Boundary-Layer Meteorol. 105: 85–97

    Article  Google Scholar 

  • Brost R.A. and Wyngaard J.C. (1978). ‘A Model Study of the Stably Stratified Planetary Boundary Layer’. J. Atmos. Sci. 35, 1427–1440.

    Google Scholar 

  • Bruin H.A.R. (1994). ‘Analytic Solutions of the Equations Governing the Temperature Fluctuation Method’. Boundary-Layer Meteorol 68: 427–432

    Article  Google Scholar 

  • Coulter R.L. and Doran J.C. (2002). ‘Spatial and Temporal Occurrences of Intermittent Turbulence during CASES-99’. Boundary-Layer Meteorol. 105: 329–349

    Article  Google Scholar 

  • Cuxart J., Yagüe C., Morales G., Terradellas E., Orbe J., Calvo J., Fernández A., Soler M.R., Infante C., Buenestado P., Espinalt A., Joergensen H.E., Rees J.M., Vilà J., Redondo J.M., Cantalapiedra I.R. and Conangla L. (2000). ‘Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98): A Report’. Boundary-Layer Meteorol. 96: 337–370

    Article  Google Scholar 

  • Cuxart, J., Holtslag, A. A. M., Beare, R. J., Bazile, E., Beljaars, A. C. M., Cheng, A., Conangla, L., Ek, M., Freedman, F., Hamdi, R., Kerstein, A., Kitagawa, H., Lenderink, G., Lewellen, D., Mailhot, J., Mauritsen, T., Perov, V., Schayes, G., Steeneveld, G. J., Svensson, G., Taylor, P. A., Weng, W., Wunsch, S., and Xu, K.-M.: 2006, ‘A Single-Column Model Intercomparison for a Stably Stratified Atmospheric Boundary Layer’, Boundary-Layer Meteorol., in press.

  • Delage Y. (1974). ‘A Numerical Study of the Nocturnal Atmospheric Boundary-Layer’. Quart. J. Roy. Meteorol. Soc. 100: 351–364

    Article  Google Scholar 

  • Delage Y. (1997). ‘Parameterising Sub-grid Scale Vertical Transport in Atmospheric Models Under Statically Stable Conditions’. Boundary-Layer Meteorol. 82: 23–48

    Article  Google Scholar 

  • Delage Y., Barlett P.A. and McCauchy J.H. (2002). ‘Study of ‘Soft’ Night Time Surface Layer Decoupling over Forest Canopies in a Land-Surface Model’. Boundary-Layer Meteorol. 103: 253–276

    Article  Google Scholar 

  • Derbyshire S.H. (1999). ‘Boundary-layer Decoupling over Cold Surfaces as a Physical Boundary Instability’. Boundary-Layer Meteorol. 90: 297–325

    Article  Google Scholar 

  • Duynkerke P.G. (1991). ‘Radiation Fog: A Comparison of Model Simulation with Detailed Observations’. Mon. Wea. Rev. 119: 324–341

    Article  Google Scholar 

  • Duynkerke P.G. (1999). ‘Turbulence, Radiation and Fog in Dutch Stable Boundary-Layers’. Boundary-Layer Meteorol. 90: 447–477

    Article  Google Scholar 

  • Estournel C. and Guedalia D. (1985). ‘Influence of Geostrophic Wind on Atmospheric Nocturnal Cooling’. J. Atmos. Sci. 42: 2695–2698

    Article  Google Scholar 

  • Galmarini S., Beets C., Duynkerke P.G. and Vila-Gueraude Arellano J. (1998). ‘Stable Nocturnal Boundary-layers: a Comparison of One-dimensional and Large-eddy Simulation Models’. Boundary-Layer Meteorol. 88: 181–210

    Article  Google Scholar 

  • Garratt J.R. and Brost R.A. (1981). ‘Radiative Cooling Effects within and above the Nocturnal Boundary-Layer’. J. Atmos. Sci. 38: 2730–2746

    Article  Google Scholar 

  • Ha K.J. and Mahrt L. (2003). ‘Radiative and Turbulent Fluxes in the Nocturnal Boundary-Layer’. Tellus 55A: 317–327

    Google Scholar 

  • Holtslag A.A.M. and Bruin H.A.R. (1988). ‘Applied Modelling of the Nighttime Surface Energy Balance over Land’. J. Appl. Meteorol. 27: 689–704

    Article  Google Scholar 

  • Holtslag A.A.M (1998). Modeling of Atmospheric Boundary Layers. In: Holtslag, A.A.M. and Duynkerke, P.G. (eds) Clear and Cloudy Boundary Layers, pp 372. Royal Netherlands Academy of Arts and Sciences, Amsterdam

    Google Scholar 

  • Holtslag A.A.M., Beare R.J. and Cuxart Rodamillans J. (2003). ‘GABLS Workshop on Stable Boundary Layers’. GEWEX News, GEWEX newsletter 13(4): 11–13

    Google Scholar 

  • Hunt J.C.R., Kaimal J.C. and Gaynor J.E. (1985). ‘Some Observations of Turbulence Structure in Stable Layers’. Quart. J. Roy. Meteorol. Soc. 111: 793–815

    Article  Google Scholar 

  • Koivusalo H., Heikinheimo M. and Karvonen T. (2001). ‘Test of a Simple Two-layer Parameterisation to Simulate the Energy Balance and Temperature of a Snow Pack’. Theor. Appl. Climatol. 70: 65–79

    Article  Google Scholar 

  • Kosovic B. and Curry J.A. (2000). ‘A Large Eddy Simulation study of a Quasi-Steady, Stably Stratified Atmospheric Boundary-Layer’. J. Atmos. Sci. 57: 1052–1068

    Article  Google Scholar 

  • Louis J.F. (1979). ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’. Boundary-Layer Meteorol. 17: 187–202

    Article  Google Scholar 

  • Mahrt L. (1987). ‘Grid-averaged Surface Fluxes’. Mon. Wea Rev. 115: 1550–1560

    Article  Google Scholar 

  • Mahrt L. and Vickers D. (2002). ‘Contrasting Vertical Structures of Nocturnal Boundary layers’. Boundary-Layer Meteorol. 105: 351–363

    Article  Google Scholar 

  • Nieuwstadt F.T.M. and Driedonks A.G.M. (1979). ‘The Nocturnal Boundary-Layer: A Case Study Compared with Model Calculations’. J. Appl. Meteorol. 18: 1397–1405

    Article  Google Scholar 

  • Nieuwstadt F.T.M. (1984). ‘The Turbulent Structure of the Stable, Nocturnal Boundary-layer’. J. Atmos. Sci. 41: 2202–2216

    Article  Google Scholar 

  • Oke T.R. (1978). Boundary-Layer Climates. Methuen and Co., London, United Kingdom, 372

    Google Scholar 

  • Rama Krishna T.V.B.P.S., Sharan M. and Aditi (2003). ‘Mean Structure of the Nocturnal Boundary-Layer under Strong and Weak Wind Conditions: EPRI Case Study’. J. Appl. Meteorol. 42: 952–969

    Article  Google Scholar 

  • ReVelle D.O. (1993). ‘Chaos and “Bursting” in the Planetary Boundary-Layer’. J. Appl. Meteorol. 32: 1169–1180

    Article  Google Scholar 

  • Steeneveld, G. J., Wiel, B. J. H. van de and Holtslag, A. A. M.: 2004, ‘Modelling the Evolution of the Nocturnal Boundary-Layer for Three Different Nights in CASES-99’, 16th Symposium on Boundary-Layer and Turbulence, Portland, Maine, U.S.A., 9–13 Aug. 2004, Amer. Meteorol. Soc., Boston, p. 4.3.

  • Stull R.B. (1988). An Introduction to Boundary-Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 666

    Google Scholar 

  • Viterbo P. and Beljaars A.C.M. (1995). ‘An Improved Land Surface Parameterization in the ECMWF Model and its Validation’. J. Climate 8: 2716–2748

    Article  Google Scholar 

  • Viterbo P., Beljaars A., Mahfouf J.F. and Teixeira J. (1999). ‘The Representation of Soil Moisture Freezing and its Impact on the Stable Boundary-Layer’. Quart. J. Roy. Meteorol. Soc. 125: 2401–2426

    Article  Google Scholar 

  • Ronda R.J., Moene A.F., Holtslag A.A.M., Wiel B.J.H. and Bruin H.A.R. (2002). ‘Intermittent Turbulence and Oscillations in the Stable Boundary-Layer over Land. Part I: A Bulk Model’. J. Atmos. Sci. 59: 942–958

    Google Scholar 

  • Wiel, B. J. H. van de, Moene, A. F., and Steeneveld, G. J.: 2004, ‘Stable Boundary Layer Decoupling: Towards a Linear Stability Analysis’, 16th Symposium on Boundary-Layer and Turbulence, Portland, Maine, U.S.A., 9–13 Aug. 2004, Amer. Meteorol. Soc., Boston, p. 4.18.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Steeneveld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steeneveld, G.J., Van De Wiel, B.J.H. & Holtslag, A.A.M. Modelling the Arctic Stable Boundary Layer and its Coupling to the Surface. Boundary-Layer Meteorol 118, 357–378 (2006). https://doi.org/10.1007/s10546-005-7771-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-7771-z

Keywords

Navigation