Skip to main content
Log in

An analysis of vertical velocity spectra obtained in the bomex fair-weather, trade-wind boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Spectra of vertical velocity fluctuations measured on board an aircraft flying over the sea along and across the wind during the Barbados Oceanographic and Meteorological Experiment (BOMEX) are stratified and composited according to estimates of the Monin-Obukhov stability length. This was done to test the hypothesis that a hierarchy of physical mechanisms, responding to wind shear and buoyancy, is active in the turbulent transfer processes of the oceanic subcloud layer. Despite the possibility that the data contain a heading-independent bias, it is concluded that a major change of eddy structure occurs over a narrow range of stability. This agrees well with an early theory on convection over land and observations of herring gull flight characteristics. The vertical variation of the spectral-composites compares favorably with other observations over land and sea. Physical models are suggested to explain the data. One of these models is in agreement with theoretical results concerning ringlike convection. The spectral data, which begin to lose confidence at about 10 km, suggest that a limiting size of eddies over the ocean is approximately twice the depth of the subcloud layer (in this case 600 m) regardless of the kind of eddy structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agee, E. M., and Dowell, K. E.: 1974, ‘Observational Studies of Mesoscale Cellular Convection’, J. Appl. Meteorol. 13, 46–53.

    Google Scholar 

  • Agee, E. M., Chen, T., and Dowell, K.: 1973, ‘A Review of Mesoscale Cellular Convection’, Bull. Amer. Meteorol. Soc. 54, 1004–1012.

    Google Scholar 

  • Agee, E. M., and Shen, P. J.: 1978, ‘MCC and Gull Flight Behavior’, Boundary-Layer Meteorol. 14, 247–251.

    Google Scholar 

  • Asai, T.: 1964, ‘Cumulus Convection in the Atmosphere with Vertical Wind Shear: Numerical Experiment’, J. Meteorol. Soc. Japan 42, 245–259.

    Google Scholar 

  • Axford, D. N.: 1968, ‘On the Accuracy of Wind Measurements Using an Inertial Platform in an Aircraft and an Example of a Measurement of the Vertical Mesostructure of the Atmosphere’, J. Appl. Meteorol. 7, 645–666.

    Google Scholar 

  • Bean, B. R., Gilmer R., Grossman, R. L., McGavin, R., and Travis, C.: 1972, ‘An Analysis of Airborne Measurements of Vertical Water Vapor Flux During BOMEX’, J. Atmos. Sci. 26, 860–869.

    Google Scholar 

  • Blackman, R. B. and Tukey, J. W.: 1959, The Measurement of Power Spectra. New York: Dover, 190 pp.

    Google Scholar 

  • Brown, R. A.: 1980, ‘Longitudinal Instabilities and Secondary Flows in the Planetary Boundary Layer: A Review’, Rev. Geophys. Space Phys. 18, 683–697.

    Google Scholar 

  • Brummer, B., Augstein, E., and Riehl, H.: 1974, ‘On the Low-Level Wind Structure in the Atlantic Trade’, Quart. J. Roy. Meteorol. Soc. 100, 109–121.

    Google Scholar 

  • Deardorff, J. W., 1928: ‘Dependence of Air-Sea Transfer Coefficients on bulk Stability’, J. Geophys. Res. 73, 2549–2557.

    Google Scholar 

  • Deardorff, J. W.: 1975, ‘Discussion of Thermals Over the Sea and Gull Flight Behavior’, Boundary-Layer Meteorol. 10, 241–246.

    Google Scholar 

  • Faller, A. J.: 1965, ‘Large Eddies in the Atmospheric Boundary Layer and Their Possible Role in the Formation of Cloud Rows’, J. Atmos. Sci. 22, 176–184.

    Google Scholar 

  • Faller, A. J. and Kaylor, R.: 1966, ‘A Numerical Study of the Instability of the Laminar Ekman Boundary Layer’, J. Atmos. Sci. 23, 466–480.

    Google Scholar 

  • Frisch, A. S. and Businger, J. A.: 1973, ‘A study of Convective Elements in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 3, 301–328.

    Google Scholar 

  • Frisch, A. S. and Chadwick, R.: 1975, Observations of Velocity Fields and Velocity Spectra in the Convective Boundary Layer Using a Dual-Dopper Radar System, Proc. 16th Radar Meteorology Conference, Houston, TX, April 1975, American Meteorology Society, Boston, MA, 237–242.

    Google Scholar 

  • Grossman, R. L.: 1973, An Aircraft Investigation of Turbulence in the Lower Layers of a Marine Boundary Layer. Ph.D. dissertation, Colorado State University. University Microfilms International No. 74–5422, Ann Arbor, MI.

    Google Scholar 

  • Hall, J.: 1962, ‘The Rise of an Isolated Thermal in Wind Shear’, Quart. J. Roy. Meteorol. Soc. 88, 394–411.

    Google Scholar 

  • Hanna, S. R.: 1969, ‘The Formation of Longitudinal Sand Dunes by Large Helical Eddies in the Atmosphere’, J. Appl. Meteorol. 8, 874–883.

    Google Scholar 

  • Hardy, K. R. and Ottersten, H.: 1969, ‘Radar Investigations of Convective Patterns in the Clear Atmosphere’, J. Atmos. Sci. 26, 666–672.

    Google Scholar 

  • Holland, J. Z.: 1973, ‘A Statistical Method for Analyzing Wave Shapes and Phase Relationships of Fluctuating Geophysical Variables’, J. Phys. Ocean. 3, 139–155.

    Google Scholar 

  • Ivanov, V. N.: 1970, The Use of the Tall IEM Meteorological Tower for the Study of the Boundary Layer of the Atmosphere, Gidrometzdat Moscow, 143 pp. (in Russian).

    Google Scholar 

  • Julian, P.: 1971, ‘Some Aspects of Variance Spectra of Synoptic Scale Tropospheric Wind Components in Midlatitudes and in the Tropics’, Monthly Weather Rev. 99, 954–965.

    Google Scholar 

  • Kaimal, J. C. and Businger, J. A.: 1970, ‘Case Studies of a Convective Plume and a Dust Devil’, J. Appl. Meteorol. 9, 612–620.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, J. S. and Readings, C. J.: 1976. ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Konrad, T. G.: 1970, ‘The Dynamics of the Convective Process in Clear Air as Seen by Radar’, J. Atmos. Sci. 27, 1138–1147.

    Google Scholar 

  • Konrad, T. G. and Kropfli, R. A.: 1968, Radar Observations of Clear Air Convection Over the Sea, Proc. 13th Radar Meteorology Conference, Montreal, Canada, August 1968, American Meteorology Society, Boston, MA, 262–269.

    Google Scholar 

  • Konrad, T. G. and Robison, F. L.: 1973, ‘Development and Characteristics of Free Convection in the Clear Air as Seen by Radar and Aircraft’, J. Appl. Meteorol. 12, 1284–1294.

    Google Scholar 

  • Krishnamurti, R.: 1970, ‘On the Transition to Turbulent Convection. Part 1. The Transition from Two- to Three-Dimensional Flow’, J. Fluid Mech. 42, 295–307.

    Google Scholar 

  • Krishnamurti, R.: 1975, ‘On Cellular Cloud Patterns. Part 3: Applicability of the Mathematical and Laboratory Models’, J. Atmos. Sci. 32, 1373–1383.

    Google Scholar 

  • Kuettner, J. P.: 1959, ‘The Band Structure of the Atmosphere’, Tellus 11, 267–294.

    Google Scholar 

  • Kuettner, J. P.: 1971, ‘Cloud Bands in the Earth's Atmosphere—Observations and Theory’, Thellus 23, 404–426.

    Google Scholar 

  • LeMone, M. A.: 1973, ‘The Structure and Dynamics of Horizontal Roll Vortices in the Planetary Boundary Layer’, J. Atmos. Sci. 30, 1077–1092.

    Google Scholar 

  • LeMone, M. A.: 1976, ‘Modulation of Turbulence Energy by Longitudinal Rolls in an Unstable Boundary Layer’, J. Atmos. Sci. 33, 1308–1320.

    Google Scholar 

  • LeMone, M. A.: 1980, ‘The Marine Boundary Layer’ in J. Wyngaard (ed.), Workshop on the Planetary Boundary Layer, American Meteorological Society, Boston, MA, 182–231.

    Google Scholar 

  • LeMone, M. A. and Zipser, E. J.: 1980, ‘Cumulonimbus Vertical Velocity Events in GATE. Part 1: Diameter, Intensity, and Mass Flux’, J. Atmos. Sci. 37, 2444–2457.

    Google Scholar 

  • Lenschow, D. H. and Stephens, P. L.: 1980, ‘The Role of Thermals in the Convective Boundary Layer’, Boundary-Layer Meteorol. 19, 509–532.

    Google Scholar 

  • Lilly, D. K.: 1971, ‘Comments on ‘Case Studies of a Convective Plume and a Dust Devil’’, J. Appl. Meteorol. 10, 590–591.

    Google Scholar 

  • Lumley, J. L. and Panofsky, H. A.: 1964. The Structure of Atmospheric Turbulence, New York: John Wiley and Sons, 239 pp.

    Google Scholar 

  • Malkus, W. V. R.: 1954, ‘Discrete Transitions in Turbulent Convection’, Proc. Roy. Soc. A225, 185–195.

    Google Scholar 

  • Markson, R.: 1975, ‘Atmospheric Electrical Detection of Organized Convection’, Science 188, 1171–1177.

    Google Scholar 

  • Nicholls, S. and Readings, C. J.: 1981, ‘Spectral Characteristics of Surface Layer Turbulence Over the Sea’, Quart. J. Roy. Meteorol. Soc. 107, 591–614.

    Google Scholar 

  • Panofsky, H. A.: 1953, ‘The Variation of the Turbulence Spectrum With Height Under Superadiabatic Conditions’, Quart. J. Roy. Meteorol. Soc. 79, 150–153.

    Google Scholar 

  • Priestley, C. H. B.: 1955, ‘Free and Forced Convection in the Atmosphere Near the Ground’, Quart. J. Roy. Meteorol. Soc. 81, 139–143.

    Google Scholar 

  • Priestley, C. H. B.: 1957, ‘Convection From the Earth's Surface’, Proc. Roy. Soc. A238, 287–304.

    Google Scholar 

  • Richards, J. M.: 1968, ‘Inclined Buoyant Puff’, J. Fluid Mech. 22, 681–692.

    Google Scholar 

  • Riehl, H.: 1954, Tropical Meteorology, McGraw-Hill. 392 pp.

  • Riehl, H.: 1970, Climate and Weather in the Tropics, Academic Press. 611 pp.

  • Roll, H. U.: 1965, Physics of the Marine Atmosphere, International Geophysics Sciences, Vol. 7, Academic Press. 426 pp.

  • Rosmond, T. E.: 1973, ‘Mesoscale Cellular Convection’, J. Atmos. Sci. 30, 1392–1409.

    Google Scholar 

  • Woodcock, A. H.: 1940, ‘Convection and Soaring Over the Open Sea. Sears Foundation’, J. Marine Res. 3, 248–253.

    Google Scholar 

  • Woodcock, A. H.: 1940, ‘Soaring Over the Open Sea’, Sci. Mon. 55, 226–232.

    Google Scholar 

  • Woodcock, A. H.: 1975, ‘Thermals Over the Sea and Gull Flight Behavior’, Boundary-Layer Meteorol. 9, 63–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossman, R.L. An analysis of vertical velocity spectra obtained in the bomex fair-weather, trade-wind boundary layer. Boundary-Layer Meteorol 23, 323–357 (1982). https://doi.org/10.1007/BF00121120

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121120

Keywords

Navigation