Skip to main content
Log in

Markov chain simulations of vertical dispersion from elevated sources into the neutral planetary boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A Lagrangian statistical-trajectory model based on a Markov chain relation is used to investigate vertical dispersion from elevated sources into the neutral planetary boundary layer. The model is fully two-dimensional, in that both vertical and longitudinal velocity fluctuations, and their correlation, are simulated explicitly. The best observational information currently available is used to characterize the mean and turbulent structure of the neutral boundary layer. In particular, a realistic vertical profile of the Lagrangian integral time scale is proposed, based partly on a review of direct measurements and partly on a comparison of the model predictions with published diffusion data. The model predictions are shown to agree well with a variety of dispersion observations.

The model is used to study vertical diffusion as a function of release height H, friction velocity u* and surface roughness z 0 for downwind distances up to 10 km from the source. The equivalent Gaussian dispersion parameter Σ z is shown to decrease slightly with an increase in H, and to increase with increases in z 0 or u*. It is demonstrated that relationships valid in a field of homogeneous turbulence can be applied to vertical dispersion in the atmosphere if the release occurs above the region of strongest gradients in the mean and turbulent parameters. Scaling in terms of the standard deviation in elevation angle of the wind at the release point leads to a universal curve which provides accurate estimates of Σ z over a wide range of values of H, z 0 and the meteorological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arya, S. P. S.: 1975, ‘Geostrophic Drag and Heat Transfer Relations for the Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 101, 147–161.

    Google Scholar 

  • Barad, M. L.: 1958, ‘Project Prairie Grass, a Field Program in Diffusion (Vol. II)’, Geophysical Research Paper No. 59, Air Force Cambridge Research Centre-TR-58-235 (II).

  • Briggs, G. A.: 1974, ‘Diffusion Estimation for Small Emissions’, in Environment Research Laboratories, Air Resources Atmospheric Turbulence and Diffusion Laboratory, 1973 Annual Report, USAEC Report ATDL-106, National Oceanic and Atmospheric Administration, December 1974.

  • Clarke, R. H.: 1970, ‘Observational Studies in the Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 96, 91–114.

    Google Scholar 

  • Clarke, R. H. and Hess, G. D.: 1974, ‘Geostrophic Departure and the Functions A and B of Rossby-Number Similarity Theory’, Boundary-Layer Meteorol. 7, 267–287.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary Layer Data’, Tech. Paper No. 19, CSIRO, Div. Meteor. Phys. Aspendale, Australia, 362 pp.

    Google Scholar 

  • Csanady, G. T.: 1967, ‘On the Resistance Law of a Turbulent Ekman Layer’, J. Atmos. Sci. 24, 467–471.

    Google Scholar 

  • Deardorff, J. W.: 1974, ‘Three-Dimensional Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Doran, J. C., Horst, T. W., and Nickola, P. W.: 1978, ‘Experimental Observations of the Dependence of Lateral and Vertical Dispersion Characteristics on Source Height’, Atmos. Environ. 12, 2259–2263.

    Google Scholar 

  • Draxler, R. R.: 1976, ‘Determination of Atmospheric Diffusion Parameters’, Atmos. Environ. 10, 99–105.

    Google Scholar 

  • Draxler, R. R.: 1979, ‘Estimating Vertical Diffusion from Routine Meteorological Tower Measurements’, Atmos. Environ. 13, 1559–1564.

    Google Scholar 

  • Gill, M. E.: 1967, ‘The Turbulent Ekman Layer’, Dept. Applied Mathematics and Theoretical Physics, University of Cambridge, England (unpublished manuscript).

    Google Scholar 

  • Grossman, R. L.: 1982, ‘An Analysis of Vertical Velocity Spectra Obtained in the BOMEX Fair-Weather, Trade-Wind Boundary Layer’, Boundary-Layer Meteorol. 23, 323–357.

    Google Scholar 

  • Hall, C. D.: 1975, ‘The Simulation of Particle Motion in the Atmosphere by a Numerical Random-Walk Model’, Quart. J. Roy. Meteorol. Soc. 101, 235–244.

    Google Scholar 

  • Hanna, S. R.: 1968, ‘A Method of Estimating Vertical Eddy Transport in the Planetary Boundary Layer using Characteristics of the Vertical Velocity Spectrum’, J. Atmos. Sci. 25, 1026–1033.

    Google Scholar 

  • Hanna, S. R.: 1979, ‘Some Statistics of Lagrangian and Eulerian Wind Fluctuations’, J. Appl. Meteorol. 18, 518–525.

    Google Scholar 

  • Hanna, S. R.: 1980, ‘Effects of Release Height on Σ y and Σ z in Daytime Conditions’, in Plume Diffusion Modelling, Annual Report to the Nuclear Regulatory Commission, Air Resources Atmospheric Turbulence and Diffusion Laboratory, ATDL-80/24, September, 1980.

  • Hanna, S. R.: 1981a, ‘Lagrangian and Eulerian Time Scale Relations in the Daytime Boundary Layer’, J. Appl. Meteorol. 20, 242–249.

    Google Scholar 

  • Hanna, S. R.: 1981b, ‘Turbulent Energy and Lagrangian Time Scales in the Planetary Boundary Layer’, Preprints of the Fifth Symposium on Turbulence, Diffusion and Air Pollution, Atlanta, March 1981, American Meteorological Society, Boston.

    Google Scholar 

  • Haugen, D. A.: 1959, ‘Project Prairie Grass, a Field Program in Diffusion (Vol. III)’, Geophysical Research Papers No. 59, Air Force Cambridge Research Centre-TR-58-235 (III).

  • Hay, J. S. and Pasquill, F.: 1959, ‘Diffusion from a Continuous Source in Relation to the Spectrum and Scale of Turbulence’, Adv. Geophys. 6, 345.

    Google Scholar 

  • Högstrom, U.: 1964, ‘An Experimental Study on Atmospheric Diffusion’, Tellus, 205-251.

  • Hojstrup, J.: 1982, ‘Velocity Spectra in the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 39, 2239–2248.

    Google Scholar 

  • Hosker, R. P. Jr.: 1974, ‘‘Estimates of Dry Deposition and Plume Depletion over Forests and Grassland’, in Physical Behaviour of Radioactive Contaminants in the Atmosphere’, IAEA, STI/PB/354, 291-309.

  • Hunt, J. C. R. and Weber, A. H.: 1979, ‘A Lagrangian Statistical Analysis of Diffusion from a Ground-Level Source in a Turbulent Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 105, 423–443.

    Google Scholar 

  • Kaimal, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Lamb, R. G.: 1978, ‘A Numerical Simulation of Dispersion from an Elevated Point Source in the Convective Planetary Boundary Layer’, Atmos. Environ. 12, 1297–1304.

    Google Scholar 

  • Lamb, R. G., Hogo, H., and Reid, L. E.: 1979, ‘A Lagrangian — Monte Carlo Model of Air Pollution Transport, Diffusion and Removal Processes’, Preprints of the Fourth Symposium on Turbulence, Diffusion and Air Pollution, American Meteorological Society, Boston.

    Google Scholar 

  • Legg, B. J. and Raupach, M. R.: 1982, ‘Markov-Chain Simulation of Particle Dispersion in Inhomogeneous Flows: The Mean Drift Velocity Induced by a Grandient in Eulerian Velocity Variance’, Boundary-Layer Meteorol. 24, 3–13.

    Google Scholar 

  • Ley, A. J.: 1982, ‘A Random Walk Simulation of Two-Dimensional Turbulent Diffusion in the Neutral Surface Layer’, Atm. Environ. 16, 2799–2808.

    Google Scholar 

  • Long, R. R.: 1974, ‘Mean Stresses and Velocities in the Neutral, Barotropic Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 475–487.

    Google Scholar 

  • Neumann, J.: 1978, ‘Some Observations on the Simple Exponential Function as a Lagrangian Velocity Correlation Function in Turbulent Diffusion’, Atmos. Environ. 12, 1965–1968.

    Google Scholar 

  • Nieuwstadt, F. T. M. and Van Ulden, A. P.: 1978, ‘A Numerical Study on the Vertical Dispersion of Passive Contaminants from a Continuous Source in the Atmospheric Surface Layer’, Atmos. Environ. 12, 2119–2124.

    Google Scholar 

  • Panofsky, H. A.: 1973, ‘Tower Micrometeorology’, in D. A. Haugen (ed.), Workshop on Micrmeteorology, American Meteorological Society, Boston.

    Google Scholar 

  • Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, ‘The Characteristics of Turbulent Velocity Components in the Surface Layer under Convective Conditions’, Boundary-Layer Meteorol. 11, 355–361.

    Google Scholar 

  • Pasquill, F.: 1974, Atmospheric Diffusion, John Wiley and Sons, New York, N.Y., 429 pp.

    Google Scholar 

  • Pasquill, F.: 1975, ‘The Dispersion of Materials in the Atmospheric Boundary-Layer — The Basis for Generalization’, Lectures on Air Pollution and Environmental Impact Analyses, American Meteorological Society, Boston, 1–34.

    Google Scholar 

  • Pasquill, F.: 1976, ‘Atmospheric Dispersion Parameters in Gaussian Plume Modelling, Part 2, Possible Requirements for Change in the Turner Workbook Values’, EPA-600/4-76-030b, Washington, D.C.

  • Readings, C. J., Haugen, D. A., and Kaimal, J. C.: 1974, ‘The 1973 Minnesota Atmospheric Boundary Layer Experiment’, Weather 29, 309–312.

    Google Scholar 

  • Reid, J. D.: 1979, ‘Markov Chain Simulations of Vertical Dispersion in the Neutral Layer for Surface and Elevated Releases’, Boundary-Layer Meteorol. 16, 3–22.

    Google Scholar 

  • Reid, J. D.: 1981, ‘The Appropriate Choice of Σ z and ovu for Predicting Surface Concentration using the Gaussian Model’, Proceedings, Air Pollution Sessions, Fifteenth Annual Congress of the Canadian Meteorological and Oceanographic Society, Saskatoon, May, 1981.

  • Reid, J. D. and Crabbe, R. S.: 1980, ‘Two Models of Long-Range Drift of Forest Pesticide Aerial Spray’, Atmos. Environ. 14, 1017–1025.

    Google Scholar 

  • Sawford, B. L.: 1982, ‘Lagrangian Monte Carlo Simulation of the Turbulent Motion of a Pair of Particles’, Quart. J. Roy. Meteorol. Soc. 108, 207–213.

    Google Scholar 

  • Singer, I. A. and Smith, M. E.: 1966, ‘Atmospheric Dispersion at Brookhaven National Laboratory’, Int. J. Air Water Pollut. 10, 125–135.

    Google Scholar 

  • Smith, F. B.: 1968, ‘Conditioned Particle Motion in a Homogeneous Turbulent Field’, Atmos. Environ. 2, 491–508.

    Google Scholar 

  • Smith, F. B.: 1972, ‘A Scheme for Estimating the Vertical Dispersion of a Plume from a Source near Ground-Level’, Proceedings of the Third Meeting of the Expert Panel on Air Pollution Modelling, NATO Committee on the Challenges of Modern Society, Paris, France, October 1972.

    Google Scholar 

  • Tennekes, H.: 1979, ‘The Exponential Lagrangian Correlation Function and Turbulent Diffusion in the Inertial Subrange’, Atmos. Environ. 13, 1565–1567.

    Google Scholar 

  • Thompson, R.: 1971, ‘Numeric Calculation of Turbulent Diffusion’, Quart. J. Roy. Meteorol. Soc. 97, 93–98.

    Google Scholar 

  • van Ulden, A. P.:1978, ‘Simple Estimates for Vertical Diffusion from Sources near the Ground’, Atmos. Environ. 12, 2125–2129.

    Google Scholar 

  • Vogt, K. J., Geiss, H., and Polster, G.: 1978, ‘New Sets of Diffusion Parameters resulting from Tracer Experiments with 50 and 100 m Release Height’, Proc. of Ninth Int. Tech. Meeting on Air Pollut. Modelling and its Applic., No. 103, NATO Committee on Challenges to Modern Society, 221–239.

  • Wamser, C. and Muller, H.: 1977, ‘On the Spectral Scale of Wind Fluctuations within and above the Surface Layer’, Quart. J. Roy. Meteorol. Soc. 103, 721–730.

    Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981a, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence. I: Systems with Constant Turbulent Velocity Scale’, Boundary-Layer Meteorol. 21, 295–313.

    Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981b, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence. II: Systems with Variable Turbulent Velocity Scale’, Boundary-Layer Meteorol. 21, 423–442.

    Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981c, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence. III: Comparison of Predictions with Experimental Data for the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 21, 443–464.

    Google Scholar 

  • Yokoyama, O.: 1971, ‘An Experimental Study of the Structure of Turbulence in the Lowest 500 Meters of the Atmosphere and Diffusion in it’, Reports of the National Institute of Pollution and Resources (Japan), No. 2.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Issued as AECL-7652.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, P.A. Markov chain simulations of vertical dispersion from elevated sources into the neutral planetary boundary layer. Boundary-Layer Meteorol 26, 355–376 (1983). https://doi.org/10.1007/BF00119533

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119533

Keywords

Navigation