Skip to main content
Log in

A Modelling Approach For Optimizing Flight Patterns In Airborne Meteorological Measurements

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A method is presented for selecting the optimal flight patterns for airbornemeteorological measurements in various flow situations. The method is basedon systematic utilisation of mesoscale model fields. Flow overan Arctic sea-ice boundary zone is modelled, and it is assumed that the mesoscale model fields represent the true state of the atmosphere, and that each possible flight pattern yields a different sample of the true fields. A plan for the basic structure of the flight pattern is assumed, and then the unexplained variance, i.e., the difference between the true variance and the sample variance, of a quantity of interest is calculated for a variety of possible flight patterns. Different target quantities are considered, such as wind speed, air temperature, and the turbulent fluxesof momentum and sensible heat. The optimal flight pattern is defined byminimisation of the unexplained variance, and often depends on the quantitywe are interested in. For sawtooth patterns, the optimal flight pattern was sensitive to the maximum ascent angle of the aircraft. In flight patterns designed for turbulence measurements, the optimal pattern was different for the unexplained variance of the turbulent fluxes and for the unexplained total heat content of the convective layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alestalo, M. and Savijärvi, H.: 1985, ‘Mesoscale Circulations in a Hydrostatic Model: Coastal Convergence and Orographic Lifting’, Tellus 37A, 156–162.

    Google Scholar 

  • Andreas, E. L.: 1987, ‘A Theory for the Scalar Roughness and the Scalar Transfer Coefficients over Snow and Sea Ice’, Boundary-Layer Meteorol. 38, 159–184.

    Google Scholar 

  • Bange, J. and Roth, R.: 1999, ‘Helicopter-Borne Flux Measurements in the Nocturnal Boundary Layer over Land —A Case Study’, Boundary-Layer Meteorol. 92, 295–325.

    Google Scholar 

  • Brümmer, B.: 1997, ‘Boundary Layer Mass, Water, and Heat Budgets in Wintertime Cold-Air Outbreaks from the Arctic Sea Ice’, Mon. Wea. Rev. 125, 1824–1837.

    Google Scholar 

  • Brümmer, B. and Müller, G.: 1999, ‘Boundary Layer Measurements with Research Aircraft Falcon’, in J. Launiainen (ed.), BALTEX-BASIS Data Report 1998, Int. BALTEX Secretariat Publ. No. 14, Geesthacht, Germany, 94 pp.

    Google Scholar 

  • Brümmer, B., Busack, B., and Hoeber, H.: 1994, ‘Boundary-Layer Observations over Water and Arctic Sea-Ice during On-Ice Air Flow’, Boundary-Layer Meteorol. 68, 75–108.

    Google Scholar 

  • Grunwald, J., Kalthoff, N., Fiedler, F., and Corsmeier, U.: 1998, ‘Application of Different Flight Strategies to Determine Areally Averaged Turbulent fluxes’, Contr. Atmos. Phys. 71, 283–302.

    Google Scholar 

  • Hartmann, J.: 1990, Airborne Turbulence Measurements in the Maritime Convective Boundary Layer, Ph.D. Thesis, Flinders University of South Australia, 163 pp.

  • Hartmann, J., Kottmeier, C., and Wamser, C.: 1992, ‘Radiation and Eddy Flux Experiment 1991 (REFLEX I)’, Rep. Polar Res. 105, Alfred-Wegener-Institute for Polar and Marine Res., Bremerhaven, Germany, 72 pp.

    Google Scholar 

  • Hartmann, J., Bochert, A., Freese, D., Kottmeier, C., Nagel, D., and Reuter, A.: 1997, ‘Radiation and Eddy Flux Experiment 1995 (REFLEX III)’, Rep. Polar Res. 218, Alfred-Wegener-Institute for Polar and Marine Res., Bremerhaven, Germany, 74 pp.

    Google Scholar 

  • Hartmann, J., Albers, F., Argentini, S., Bochert, A., Bonafe, U., Cohrs, W., Conidi, A., Freese, D., Georgiadis, T., Ippoliti, A., Kaleschke, L., Lüpkes, C., Maixner, U., Mastrantonio, G., Ravegnani, F., Reuter, A., Trivellone, G., and Viola, A.: 1999, ‘Arctic Radiation and Turbulence Interaction Study (ARTIST)’, Rep. Polar Res. 305, Alfred-Wegener-Institute for Polar and Marine Res., Bremerhaven, Germany, 81 pp.

    Google Scholar 

  • Heinemann, G.: 1999, ‘The KABEG'97 Field Experiment: An Aircraft-Based Study of Katabatic Wind Dynamics over the Greenland Ice Sheet’, Boundary-Layer Meteorol. 93, 75–116.

    Google Scholar 

  • Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation’, Boundary-Layer Meteorol. 42, 55–78.

    Google Scholar 

  • Holtslag, A. A. M. and de Bruin, H. A. R.: 1988, ‘Applied Modeling of the Nighttime Surface Energy Balance over Land’, J. Appl. Meteorol. 37, 689–704.

    Google Scholar 

  • Kottmeier, C., Hartmann, J., Wamser, C., Bochert, A., Lüpkes, C., Freese, D., and Cohrs, W.: 1994, ‘Radiation and Eddy Flux Experiment 1993 (REFLEX II)’, Rep. Polar Res. 133, Alfred-Wegener-Institut fur Polar and Marine Res., Bremerhaven, Germany, 62 pp.

    Google Scholar 

  • Launiainen, J.: 1983, ‘Parameterization of the Water Vapour Flux over a Water Surface by the Bulk Aerodynamic Method’, Ann. Geophys. 1, 481–492.

    Google Scholar 

  • Lüpkes, C. and Schlünzen, K. H.: 1996, ‘Modelling the Arctic Convective Boundary-Layer with Different Turbulence Parameterizations’, Boundary-Layer Meteorol. 79, 107–130.

    Google Scholar 

  • Mahrt, L.: 1998, ‘Flux Sampling Errors for Aircraft and Towers’, J. Atmos. Oceanic Tech. 15, 416–429.

    Google Scholar 

  • Mai, S., Wamser, C., and Kottmeier, C.: 1996, ‘Geometric and Aerodynamic Roughness of Sea Ice’, Boundary-Layer Meteorol. 77, 233–248.

    Google Scholar 

  • Makshtas, A. P.: 1991, The Heat Budget of Arctic Ice in the Winter, Int. Glaciol. Soc., Cambridge, U.K., 77 pp.

    Google Scholar 

  • Mann, J. and Lenschow, D. H.: 1994, ‘Errors in Airborne Flux Measurements’, J. Geophys. Res. 99, 14,519–14,526.

    Google Scholar 

  • Roth, R., Hofmann, M., and Wode, C.: 1999, ‘Geostrophic Wind, Gradient Wind, Thermal Wind and the Vertical Wind Profile —A Sample Analysis within a Planetary Boundary Layer over Arctic Sea-Ice’, Boundary-Layer Meteorol. 92, 327–339.

    Google Scholar 

  • Santoso, E. and Stull, R.: 1999, ‘Use of Synthetic Data to Test Flight Patterns for a Boundary Layer Field Experiment’, J. Atmos. Oceanic Tech. 16, 1157–1171.

    Google Scholar 

  • Savijärvi, H.: 1991, ‘The United States Great Plains Diurnal ABL Variation and the Nocturnal Low-Level Jet’, Mon. Wea. Rev. 119, 833–840.

    Google Scholar 

  • Smith, S. D.: 1988, ‘Coefficients for Sea Surface Wind Stress, Heat Flux, and Wind Profiles as a Function of Wind Speed and Temperature’, J. Geophys. Res. 93, 15,467–15,472.

    Google Scholar 

  • Tjernström, M., and Samuelsson, P.: 1995, ‘The Effect of Inertial Navigation System Time Response on Airborne Turbulence Measurements’, J. Atmos. Oceanic Tech. 12, 1196–1213.

    Google Scholar 

  • Vickers, D. and Mahrt, L.: 1997, ‘Quality Control and Flux Sampling Problems for Tower and Aircraft Data’, J. Atmos. Oceanic Tech. 14, 512–526.

    Google Scholar 

  • Vihma, T.: 1995, ‘Subgrid Parameterization of Surface Heat and Momentum Fluxes over Polar Oceans’, J. Geophys. Res. 100, 22,625–22,646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vihma, T., Kottmeier, C. A Modelling Approach For Optimizing Flight Patterns In Airborne Meteorological Measurements. Boundary-Layer Meteorology 95, 211–230 (2000). https://doi.org/10.1023/A:1002634613282

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002634613282

Navigation