Skip to main content
Log in

Air–Sea Interaction in the Southern Ocean: Exploring the Height of the Wave Boundary Layer at the Air–Sea Interface

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We investigate the momentum and energy exchange across the wave boundary layer (WBL). Directly at the air–sea interface, we test three wave-growth parametrizations by comparing estimates of the wave-induced momentum flux derived from wave spectra with direct covariance estimates of the momentum flux. An exponential decay is used to describe the vertical structure of the wave-induced momentum in the atmospheric WBL through use of a decay rate, a function of the dimensionless decay rate and wavenumber (A = α k). The decay rate is varied to minimize the difference between the energy extracted from the WBL and the energy flux computed from wave spectra using our preferred wave-growth parametrization. For wave ages (i.e. the peak phase speed to atmospheric friction velocity ratio) in the range \( 15 < c_{p}/u_{*} < 35 \) we are able to balance these two estimates to within 10%. The decay rate is used to approximate the WBL height as the height to which the wave-induced flux is 0.1 of its surface value and the WBL height determined this way is found to be between 1–3 m. Finally, we define an effective phase speed with which to parametrize the energy flux for comparison with earlier work, which we ultimately attempt to parametrize as a function of wind forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anis A, Moum JN (1995) Surface wave-turbulence interactions. Scaling Ε(z) near the sea surface. J Phys Oceanogr 25(9):2025–2045

    Article  Google Scholar 

  • Belcher SE, Hunt JCR (1993) Turbulent shear flow over slowly moving waves. J Fluid Mech 251:109–148. https://doi.org/10.1017/S0022112093003350

    Article  Google Scholar 

  • Brumer SE, Zappa CJ, Blomquist BW, Fairall CW, Cifuentes-Lorenzen A, Edson JB, Huebert BJ (2017) Wave-related Reynolds number parameterizations of CO2 and DMS transfer velocities. Geophys Res Lett 44:9865–9875. https://doi.org/10.1002/2017GL074979

    Article  Google Scholar 

  • Burgers G, Makin VK (1993) Boundary-layer model results for wind-sea growth. J Phys Oceanogr 23:372–385

    Article  Google Scholar 

  • Chalikov DV (1995) The parameterization of the wave boundary layer. J Phys Oceanogr 25:1335–1349

    Article  Google Scholar 

  • Chalikov D, Belevich M (1993) One-dimensional theory of the wave boundary layer. Boundary-Layer Meteorol 63:65–96

    Article  Google Scholar 

  • Chalikov DV, Makin VK (1991) Models of the wave boundary layer. Boundary-Layer Meteorol 56(1–2):83–99

    Article  Google Scholar 

  • Chalikov DV, Rainchik S (2011) Coupled numerical modelling of wind and waves and the theory of the wave boundary layer. Boundary-Layer Meteorol 138(1):1–41

    Article  Google Scholar 

  • Cifuentes-Lorenzen A, Edson JB, Zappa CJ, Bariteau L (2013) A multisensor comparison of ocean wave frequency spectra from a research vessel during the Southern Ocean Gas Exchange Experiment. J Atmos Ocean Technol 30(12):2907–2925. https://doi.org/10.1175/JTECH-D-12-00181.1

    Article  Google Scholar 

  • Dobson FW (1971) Measurements of atmospheric pressure on wind-generated sea waves. J Fluid Mech 48(1):91–127. https://doi.org/10.1017/S0022112071001496

    Article  Google Scholar 

  • Donelan MA, Pierson WJ (1987) Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J Geophys Res 92(C5):4971–5029. https://doi.org/10.1029/JC092iC05p04971

    Article  Google Scholar 

  • Donelan MA, Babanin AV, Young IR, Banner ML (2006) Wave-follower field measurements of the wind-input spectral function. Part II: parameterization of the wind input. J Phys Oceanogr 36(8):1672–1689

    Article  Google Scholar 

  • Drennan WM, Donelan MA, Terray EA, Katsaros KB (1996) Oceanic turbulence dissipation measurements in SWADE. J Phys Oceanogr 26(5):808–815. 10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2

    Article  Google Scholar 

  • Drennan WM, Graber HC, Hauser D, Quentin C (2003) On the wave age dependence of wind stress over pure wind seas. J Geophys Res 108(C3):8062. https://doi.org/10.1029/2000JC000715

    Article  Google Scholar 

  • Edson JB, Fairall CW (1998) Similarity Relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J Atmos Sci 55(13):2311–2328. 10.1175/1520-0469(1998)055<2311:SRITMA>2.0.CO;2

    Article  Google Scholar 

  • Edson JB, Crawford T, Crescenti J, Farrar T, Frew N, Gerbi G, Helmis C, Hristov TS, Khelif D, Jessup A (2007) The coupled boundary layers and air–sea transfer experiment in low winds. Bull Am Meteorol Soc 88(3):341–356

    Article  Google Scholar 

  • Edson JB, Fairall CW, Bariteau L, Zappa CJ, Cifuentes-Lorenzen A, McGillis WR, Pezoa S, Hare JE, Helmig D (2011) Direct covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: wind speed dependency. J Geophys Res 116:C00F10. https://doi.org/10.1029/2011jc007022

    Article  Google Scholar 

  • Edson JB, Jampana V, Weller RA, Bigorre SP, Plueddemann AJ, Fairall CW, Miller SD, Mahrt L, Vickers D, Hersbach H (2013) On the exchange of momentum over the open ocean. J Phys Oceanogr 43(8):1589–1610. https://doi.org/10.1175/JPO-D-12-0173.1

    Article  Google Scholar 

  • Finnigan JJ, Einaudi F, Fua D (1984) The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer. J Atmos Sci 41(16):2409–2436. 10.1175/1520-0469(1984)041<2409:TIBAIG>2.0.CO;2

    Article  Google Scholar 

  • Grachev AA, Fairall CW (2001) Upward momentum transfer in the marine boundary layer. J Phys Oceanogr 31(7):1698–1711. 10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2

    Article  Google Scholar 

  • Grare L, Lenain L, Melville WK (2013) Wave-coherent airflow and critical layers over ocean waves. J Phys Oceanogr 43(10):2156–2172. https://doi.org/10.1175/JPO-D-13-056.1

    Article  Google Scholar 

  • Hara T, Belcher SE (2004) Wind profile and drag coefficient over mature ocean surface wave spectra. J Phys Oceanogr 34(11):2345–2358. https://doi.org/10.1175/JPO2633.1

    Article  Google Scholar 

  • Hare JE, Hara T, Edson JB, Wilczak JM (1997) A similarity analysis of the structure of airflow over surface waves. J Phys Oceanogr 27(6):1018–1037

    Article  Google Scholar 

  • Harris DL (1966) The wave-driven wind. J Atmos Sci 23:688–693. 10.1175/1520-0469(1966)023<0688:TWDW>2.0.CO;2

    Article  Google Scholar 

  • Hasselmann D, Bösenberg J (1991) Field measurements of wave-induced pressure over wind-sea and swell. J Fluid Mech 230(1):391–428

    Article  Google Scholar 

  • Ho DT, Sabine CL, Hebert D, Ullman DS, Wanninkhof R, Hamme RC, Strutton PG, Hales B, Edson JB, Hargreaves BR (2011) Southern Ocean Gas Exchange Experiment: setting the stage. J Geophys Res 116:C00F08. https://doi.org/10.1029/2010jc006852

    Article  Google Scholar 

  • Högström U, Smedman A, Sahleé E, Drennan WM, Kahma KK, Pettersson H, Zhang F (2009) The atmospheric boundary layer during swell: a field study and interpretation of the turbulent kinetic energy budget for high wave ages. J Atmos Sci 66(9):2764–2779

    Article  Google Scholar 

  • Högström U, Rutgersson A, Sahlée E, Smedman A-S, Hristov TS, Drennan WM, Kahma KK (2013) Air–sea interaction features in the Baltic Sea and at a Pacific trade-wind site: an inter-comparison study. Boundary-Layer Meteorol 147:139–163. https://doi.org/10.1007/s10546-012-9776-8

    Article  Google Scholar 

  • Högström U, Sahlée E, Smedman A-S, Rutgersson A, Nilsson E, Kahma KK, Drennan WM (2015) Surface stress over the ocean in swell-dominated conditions during moderate winds. J Atmos Sci 72(12):4777–4795. https://doi.org/10.1175/JAS-D-15-0139.1

    Article  Google Scholar 

  • Hristov TS, Miller SD, Friehe CA (2003) Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature 422(6927):55–58. https://doi.org/10.1038/nature01382

    Article  Google Scholar 

  • Janssen PAEM (1989) Wave-induced stress and the drag of air-flow over sea waves. J Phys Oceanogr 19(6):745–754. 10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2

    Article  Google Scholar 

  • Janssen PAEM (1991) Quasi-linear theory of wind-wave generation applied to wave forecasting. J Phys Oceanogr 21(11):1631–1642. 10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2

    Article  Google Scholar 

  • Janssen PAEM (1999) On the effect of ocean waves on the kinetic energy balance and consequences for the inertial dissipation technique. J Phys Oceanogr 29(3):530–534. 10.1175/1520-0485(1999)029<0530:OTEOOW>2.0.CO;2

    Article  Google Scholar 

  • Kudryavtsev VN, Makin VK (2001) The impact of air-flow separation on the drag of the sea surface. Boundary-Layer Meteorol 98(1):155–171

    Article  Google Scholar 

  • Lighthill MJ (1962) Physical interpretation of the mathematical theory of wave generation by wind. J Fluid Mech 14(3):385–398. https://doi.org/10.1017/S0022112062001305

    Article  Google Scholar 

  • Lombardo CP, Gregg MC (1989) Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J Geophys Res 94(C5):6273–6284. https://doi.org/10.1029/JC094iC05p06273

    Article  Google Scholar 

  • Makin VK, Kudryavtsev VN (1999) Coupled sea surface-atmosphere model: 1. Wind over waves coupling. J Geophys Res 104(C4):7613–7623

    Article  Google Scholar 

  • Makin VK, Mastenbroek C (1996) Impact of waves on air-sea exchange of sensible heat and momentum. Boundary-Layer Meteorol 79:279–300

    Article  Google Scholar 

  • Makin VK, Kudryavtsev VN, Mastenbroek C (1995) Drag of the sea surface. Boundary-Layer Meteorol 73(1):159–182. https://doi.org/10.1007/BF00708935

    Article  Google Scholar 

  • Mastenbroek C, Makin VK, Garat MH, Giovanangeli JP (1996) Experimental evidence of the rapid distortion of turbulence in the air flow over water waves. J Fluid Mech 318(1):273–302

    Article  Google Scholar 

  • McBean GA, Elliott JA (1975) The vertical transports of kinetic energy by turbulence and pressure in the boundary layer. J Atmos Sci 32:753–766

    Article  Google Scholar 

  • Miles JW (1957) On the generation of surface waves by shear flows. J Fluid Mech 3(02):185–204. https://doi.org/10.1017/S0022112057000567

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1975) Statistical fluid mechanics: mechanics of turbulence. MIT Press, Cambridge

    Google Scholar 

  • Plant WJ (1982) A relationship between wind stress and wave slope. J Geophys Res Oceans 87(C3):1961–1967

    Article  Google Scholar 

  • Rieder KF, Smith JA (1998) Removing wave effects from the wind stress vector. J Geophys Res Oceans 103(C1):1363–1374. https://doi.org/10.1029/97JC02571

    Article  Google Scholar 

  • Scully ME, Trowbridge JH, Fisher AW (2016) Observations of the transfer of energy and momentum to the oceanic surface boundary layer beneath breaking waves. J Phys Oceanogr 46(6):1823–1837

    Article  Google Scholar 

  • Smedman A-S, Högström U, Sahleé E, Drennan WM, Kahma KK, Pettersson H, Zhang F (2009) Observational study of marine atmospheric boundary layer characteristics during swell. J Atmos Sci 66(9):2747–2763. https://doi.org/10.1175/2009JAS2952.1

    Article  Google Scholar 

  • Snyder RL, Dobson FW, Elliott JA, Long RB (1981) Array measurements of atmospheric pressure fluctuations above surface gravity waves. J Fluid Mech 102:1–59. https://doi.org/10.1017/S0022112081002528

    Article  Google Scholar 

  • Sullivan PP, Edson JB, Hristov T, McWilliams JC (2008) Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J Atmos Sci 65(4):1225–1245

    Article  Google Scholar 

  • Terray EA, Donelan MA, Agrawal YC, Drennan WM, Kahma KK, Williams AJ, Hwang PA, Kitaigorodskii SA (1996) Estimates of kinetic energy dissipation under breaking waves. J Phys Oceanogr 26(5):792–807. 10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2

    Article  Google Scholar 

  • Weber JEH (2008) A note on mixing due to surface wave breaking. J Geophys Res 113(C11):C11009. https://doi.org/10.1029/2008JC004758

    Article  Google Scholar 

  • Wetzel S (1996) An investigation of wave-induced momentum flux through phase averaging of open ocean wind and wave fields. Thesis, Massachusetts Institute of Technology, Massachusetts, USA

  • Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90(C5):8995–9005. https://doi.org/10.1029/JC090iC05p08995

    Article  Google Scholar 

  • Wu L, Rutgersson A, Nilsson E (2017) Atmospheric Boundary layer turbulence closure scheme for wind-following swell conditions. J Atmos Sci 74(7):2363–2382. https://doi.org/10.1175/JAS-D-16-0308.1

    Article  Google Scholar 

  • Wyngaard JC, Coté OR (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28(2):190–201

    Article  Google Scholar 

  • Zappa CJ, Farrar JT, Straneo F, Moffat CF (2012) Observations of upper-ocean turbulence during the VOCALS Experiment. Ocean Sciences Meeting, American Geophysical Union, 20–25 February 2012, Salt Lake City, UT, USA

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant 0647475, the National Oceanic and Atmospheric Administration under Grant NA07OAR4310084, and the NOAA Office of Climate Observations. Additional support was provided by the National Science Foundation (0647667; Christopher Zappa at Lamont Doherty Earth Observatory). This is Lamont-Doherty Earth Observatory contribution number 8219. Finally, we would like to thank the anonymous reviewers for their constructive criticism and helpful comments during the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Cifuentes-Lorenzen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cifuentes-Lorenzen, A., Edson, J.B. & Zappa, C.J. Air–Sea Interaction in the Southern Ocean: Exploring the Height of the Wave Boundary Layer at the Air–Sea Interface. Boundary-Layer Meteorol 169, 461–482 (2018). https://doi.org/10.1007/s10546-018-0376-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-018-0376-0

Keywords

Navigation