biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 48:481-489, 2004 | DOI: 10.1023/B:BIOP.0000047141.49470.77

Differences in Anatomical Structure and Lignin Content of Roots of pedunculate Oak and Wild Cherry-Tree Plantlets During Acclimation

A. Soukup1, J. Malá2, M. Hrubcová3, J. Kálal2, O. Votrubová1, M. Cvikrová3
1 Department of Plant Physiology, Faculty of Science, Charles University, Prague 2, Czech Republic
2 Forestry and Game Management Research Institute, Zbraslav-Strnady, Czech Republic
3 Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 6, Czech Republic

The lignin contents and anatomical structure of roots of wild cherry (Prunus avium L.) and pedunculate oak (Quercus robur L.) plantlets were compared to explain differences in response during transfer from in vitro to ex vitro conditions. Lignification of cell walls increased significantly in both oak and cherry roots during the period of acclimation and finally lignin content of root tissues of in vitro propagated plantlets reached the levels not significantly different from seedlings grown in soil. Later on when secondary tissues appeared, lignified secondary xylem constituted most of the tissues of both species. The most conspicuous interspecific difference in root structure was the presence of phi-thickenings in cortical layers just outer to endodermis in cherry roots cultivated ex vitro. Formation of phi-thickenings was avoided in vitro and their presence thus seems to be under environmental control. Suberised well established exodermis was present in roots of oak but not detected in those of cherry. Very early development of exodermis in oak roots, preceding suberisation of endodermis, was recorded in vitro but not in well aerated soil. While multilayered and well-developed cork occurred in oak, only thin walled and less suberised secondary dermal tissues were found in cherry.

Keywords: exodermis; in vitro; lignin; phi-thickenings; Prunus avium; Quercus robur; root development
Subjects: auxins; Casparian bands; endodermis, exodermis; exodermis, endodermis; in vitro culture, acclimation, adaptation; in vitro culture, nutrient media modification; in vitro culture, root, rooting; irradiation, continuous, anatomical structure, root; lignin, root development; nutrient medium, Murashige and Skoog; nutrient medium, woody plant medium, WPM (Loyd and McCown); pedunculate oak, root development; phi (Φ) thickening; Prunus avium; Quercus robur; root development, lignin; suberisation; wild cherry, root development; xylem, root lignification

Published: December 1, 2004  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Soukup, A., Malá, J., Hrubcová, M., Kálal, J., Votrubová, O., & Cvikrová, M. (2004). Differences in Anatomical Structure and Lignin Content of Roots of pedunculate Oak and Wild Cherry-Tree Plantlets During Acclimation. Biologia plantarum48(4), 481-489. doi: 10.1023/B:BIOP.0000047141.49470.77
Download citation

References

  1. Bigot, C., Engelmann, F.: Vegetative propagation in vitro of Cunninghamia lanceolata (Lamb.) Hook.-In: Bonga, J.M., Durzan, D.J. (ed.): Cell and Tissue Culture in Forestry. Vol. III. Pp.114-127. Martinus Nijhoff Publishers, The Hague 1987. Go to original source...
  2. Bruce, R.J., West, C.A.: Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean.-Plant Physiol. 91: 889-897, 1989. Go to original source...
  3. Brundrett, M.C., Kendrick, B., Peterson, C.A.: Efficient lipid staining in plant material with Sudan Red 7B or Fluorol Yellow 088 in polyethylene glycol.-Biotech. Histochem. 66: 133-142, 1988. Go to original source...
  4. Clarkson, D.T., Robards, A.W.: The endodermis, its structural development and physiological role.-In: Torrey, J.G., Clarkson, D.T. (ed.): The Structure and Function of Roots. Pp. 415-436. Academic Press, London 1975.
  5. Degenhardt, B., Gimmler, H.: Cell wall adaptations to multiple environmental stresses in maize roots.-J. exp. Bot. 51: 595-603, 2000. Go to original source...
  6. Dijkstra, P., Lambers, H.: Analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major differing in relative growth rate.-New Phytol. 113: 283-290, 1989. Go to original source...
  7. Enstone, D.E., Peterson, C.A.: The apoplastic permeability of root apices.-Can. J. Bot. 70: 1502-1512, 1992. Go to original source...
  8. Fahn, A.: Plant Anatomy (4 th Edition).-Pergamon Press, Oxford 1990.
  9. Fukuda, A.H., Komamine, A.: Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans.- Plant Physiol. 65: 57-60, 1980. Go to original source...
  10. Gaspar, T., Coumans, M.: Root formation.-In: Bonga, J.M., Durzan, D.J. (ed.): Cell and Tissue Culture in Forestry. Vol. II. Pp. 202-217. Martinus Nijhoff Publishers, The Hague 1987. Go to original source...
  11. Gerrath, J.M., Covington, L., Doubt, J., Larson, D.: Occurrence of phi-thickenings is correlated with gymnosperm systematics.-Can. J. Bot. 80: 852-860, 2002. Go to original source...
  12. Haas, D.L., Carothers, Z.B., Robbins, R.R.: Observation on the phi-thickenings and Casparian strips in Pelargonium roots.-Amer. J. Bot. 63: 863-867, 1976. Go to original source...
  13. Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L., Hartung, W.: The exodermis: a variable apoplastic barrier.-J. exp. Bot. 52: 2245-2264, 2001. Go to original source...
  14. Johansen, D.A.: Plant Microtechnique.-McGraw-Hill Book Co., New York 1940.
  15. Kamula, S.A., Peterson, C.A. Mayfield, C.I.: Impact of exodermis on infection of roots by Fusarium culmorum.-Plant Soil 167: 121-126, 1994. Go to original source...
  16. Lambers, H., Porter, H.: Inherent variation in growth rate between higher plants: a search for physiological causes and ecophysiological consequences.-Adv. ecol. Res. 23: 188-261, 1992. Go to original source...
  17. Lloyd, G., McCown, B.H.: Commercially-feasible micropropa-gation of mountain laurel Kalmia latifolia by use of shoot tip culture.-Comb. Proc. Int. Plant Propag. Soc. 30: 421-427, 1981.
  18. Mackenzie, K.A.D.: The development of the endodermis and phi layer of apple roots.-Protoplasma 100: 21-32, 1979. Go to original source...
  19. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassay with tobacco tissue cultures.-Physiol. Plant. 15: 473-797, 1962. Go to original source...
  20. Peterson, C.A., Emanuel, M.E., Weerdenburg, C.A.: The permeability of phi thickenings in apple (Pyrus malus) and geranium (Pelargonium hortorum) roots to an apoplastic fluorescent dye tracer.-Can. J. Bot. 59: 1107-1110, 1981. Go to original source...
  21. Peterson, C.A., Emanuel, M.E., Wilson, C.: Identification of a Casparian band in the hypodermis of onion and corn roots.-Can. J. Bot. 60: 1529-1535, 1982. Go to original source...
  22. Peterson, C.A., Perumalla, C.J.: Development of the hypodermal Casparian band in corn and onion roots.-J. exp. Bot. 35: 51-57, 1984. Go to original source...
  23. Peterson, C.A., Perumalla, C.J.: A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis.-Bot. J. Linn. Soc. 103: 113-125, 1990. Go to original source...
  24. Peterson, R.L.: Adaptations of root structure in relation to biotic and abiotic factors.-Can. J. Bot. 70: 661-675, 1992. Go to original source...
  25. Pinker, I., Jesch, H.H., Klausch, A.: Rooting and acclimatization of in vitro propagated shoots of Tilia cordata "Wega".-Gartenbauwissenschaft 60: 253-258, 1995.
  26. Praktikakis, E., Rhizopoulou, S., Psaras, GK.: A phi layer in roots of Ceratonia siliqua L.-Bot. Acta 111: 93-98, 1998. Go to original source...
  27. Russow, E.: Betrachtungen über das Leitbündel aus phylogenetischem Gesichpunkt.-Schnakenburg's Anstalt, Dorpat 1875.
  28. Schreiber, L., Hartmann, K., Skrabs, M., Zeier, J.: Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls.-J. exp. Bot. 50: 1267-1280, 1999. Go to original source...
  29. Soukup, A., Votrubová, O., ýí¾ková, H.: Development of anatomical structure of Phragmites australis.-New Phytol. 153: 277-287, 2002. Go to original source...
  30. Vietez, A.M., Vietez, M.L., Ballester, A.: In vitro chesnut regeneration: anatomical and chemical changes during the rooting process.-In: Proc. IUFRO Sect. S2015.I Workshop In Vitro Cultivation for Tree Species. Pp. 149-152. IUFRO, Fontainebleau 1981.
  31. Von Guttenberg, H.: Der primäre Bau der Angiospermenwurzel.-Gebrüder Borntraeger, Berlin 1968.
  32. Weerdenburg, C.A., Peterson, C.A.: Structural changes in phi thickening during primary and secondary growth in root. 1. Apple (Pyrus malus) Rosaceae.-Can. J Bot. 61: 2570-2576, 1983. Go to original source...
  33. Zimmermann, H.M., Steudle, E.: Apoplastic transport across young maize roots: effect of the exodermis.-Planta 206: 7-19, 1998. Go to original source...