Skip to main content

Advertisement

Log in

Local and landscape effects on temporary pond zooplankton egg banks: conservation implications

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Understanding landscape correlates of local habitat integrity and community structure and the identification of spatial scales at which these associations operate are relevant for management and conservation of unique but globally threatened temporary ponds. We use a multivariate variance decomposition approach to determine taxon-specific associations of zooplankton communities banked in dry pond soils (rotifers, cladocerans, copepods) with local habitat features and landscape characteristics across four spatial scales (100 buffer strip, 1, 5, and 10 km scales). Results show similar degrees of correlation between rotifer and cladoceran communities with local habitat conditions (chiefly water quality). This is interpreted according to life-history traits of component species of wetland propagule banks. Associations with landscape features varied between communities with rotifers correlating with landscape structural features only at the buffer scale while cladocerans showed no significant correlations with landscape characteristics across all scales. Copepods were neither significantly associated with local nor landscape characteristics. The results of this study contrast strikingly with our previous population-based study, where populations of Triops cancriformis and Branchinecta orientales were significantly correlated with landuse features at the broadest scale. The combined results suggest that a three-way management scheme could be useful for conservation of zooplankton resting egg banks in this remnant wetland complex. These schemes could focus on the restoration of wetland water quality, the establishment of vegetated buffer strips around the ponds to counteract degradation resulting from runoff, and reforestation and/or the creation of hedgerows in agricultural catchments to avoid impacts resulting from broad-scale diffuse pollution fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alonso M (1996) Fauna Ibérica-Crustacea, Branchiopoda,vol 7. Museo Nacional de Ciencias Naturales. Consejo Superior de Investigaciones Científicas, Madrid

    Google Scholar 

  • Alvarez-Cobelas M, Rojo C, Angeler DG (2005) Mediterranen limnology: current status, gaps and the future. J Limnol 64:13–29

    Google Scholar 

  • Amoros C (1984) Crustacés Cladocéres. Université Claude- Bernard Lyon I, Département de Biologie Animale et Ecologie 43, Lyon

    Google Scholar 

  • Angeler DG (2007) Resurrection ecology and global climate change research in freshwater ecosystems. J N Am Benthol Soc 26:12–22. doi:10.1899/0887-3593(2007)26[12:REAGCC]2.0.CO;2

    Article  Google Scholar 

  • Angeler DG, García G (2005) Using emergence from soil propagule banks as indicators of ecological integrity in wetlands: advantages and limitations. J N Am Benthol Soc 24:740–752. doi:10.1899/05-025.1

    Article  Google Scholar 

  • Angeler DG, Moreno JM (2007) Zooplankton community resilience after press-type anthropogenic stress in temporary ponds. Ecol Appl 17:1105–1115. doi:10.1890/06-1040

    Article  PubMed  Google Scholar 

  • Angeler DG, Rodríguez M, Martín S, Moreno JM (2004) Assessment of application-rate dependent impacts of a long-term fire retardant chemical (Fire-Trol 934®) on Typha domingensis germination. Environ Int 30:375–381. doi:10.1016/j.envint.2003.09.003

    Article  PubMed  CAS  Google Scholar 

  • Angeler DG, Sánchez B, García G, Moreno JM (2006) Community ecotoxicology: invertebrate emergence from Fire Trol 934 contaminated vernal pool and salt marsh sediments under contrasting photoperiod and temperature regimes. Aquat Toxicol 78:167–175. doi:10.1016/j.aquatox.2006.02.030

    Article  PubMed  CAS  Google Scholar 

  • Angeler DG, Viedma O, Sánchez-Carrillo S, Alvarez-Cobelas M (2008) Conservations issues of temporary wetland Branchiopoda (Anostraca, Notostraca: Crustacea): what spatial scales are relevant? Biol Conserv 141:1224–1234. doi:10.1016/j.biocon.2008.02.018

    Article  Google Scholar 

  • Boulton AJ, Lloyd LN (1992) Mean flood recurrence frequency and invertebrate emergence from dry sediments of the Chowille floodplain, river Murray, Australia. Regul Rivers Res Manag 7:137–151. doi:10.1002/rrr.3450070203

    Article  Google Scholar 

  • Brendonck L, De Meester L (2003) Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiol 491:65–84. doi:10.1023/A:1024454905119

    Article  Google Scholar 

  • Carpenter SR (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–680. doi:10.2307/2265490

    Article  Google Scholar 

  • Chamberlin TC (1897) The method of multiple working hypotheses. J Geol 6:837–848

    Article  Google Scholar 

  • Colburn EA (2004) Vernal pools: natural history and conservation. The McDonald and Woodward Publishing Company, Blacksburg

    Google Scholar 

  • De Meester L, Declerck S, Stoks R et al (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat Conserv: Mar Freshwat Ecosyst 15:715–725. doi:10.1002/aqc.748

    Article  Google Scholar 

  • Declerck S, De Bie T, Ercken D, Hampel H, Schrijvers S, Van Wichelen J, Gillard V, Mandiki R, Losson B et al (2006) Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales. Biol Conserv 131:523–532. doi:10.1016/j.biocon.2006.02.024

    Article  Google Scholar 

  • Environmental Systems Research Institute Inc (ESRI) (1999). ArcView GIS 3.2. Software. 380 New York Street, Redlands

  • Euliss NH, Mushet DM (1999) Influence of agriculture on aquatic invertebrate communities of temporary wetlands in the prairie pothole region of North Dakota, USA. Wetlands 19:578–583

    Article  Google Scholar 

  • European Environmental Agency (EEA) (2000) CORINE land cover 2000 project. Copenhagen

  • European Pond Conservation Network (EPCN) (2007) Developing the pond manifesto. Ann Limnol-Int J Limnol 43:221–232

    Google Scholar 

  • Figuerola J, Green AJ (2002) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw Biol 47:483–494. doi:10.1046/j.1365-2427.2002.00829.x

    Article  Google Scholar 

  • Forbes ST (1887) The lake as a microcosm. Nat Hist Survey 15:537–550 Bulletin of the Peoria (Illinois) Scientific Association. Reprinted in Bull Illinois (1925)

    Google Scholar 

  • García-Canseco V (2000) Humedales de Ciudad Real. Editorial Esfangos S.L, Talavera de la Reina

    Google Scholar 

  • Gleason RA, Euliss NH, Hubbard DE, Duffy WG (2003) Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands 23:26–34. doi:10.1672/0277-5212(2003)023[0026:EOSLOE]2.0.CO;2

    Article  Google Scholar 

  • Hall DL, Willig MR, Moorhead DL, Sites RW, Fish EB, Mollhagen TR (2004) Aquatic macroinvertberate diversity of playa wetlands: the role of landscape and island biogeographic characteristics. Wetlands 24:77–91. doi:10.1672/0277-5212(2004)024[0077:AMDOPW]2.0.CO;2

    Article  Google Scholar 

  • Harding JP, Smith WA (1974) Cyclopid and calanoid copepods. 2nd edn. British Museum (Natural History). Freshwater Biological Association, Scientific Publication, No. 18, Ambleside

  • Hilborn R, Mangel M (1997) The ecological detective: confronting models with data. Princeton University Press, Princeton

    Google Scholar 

  • Houlahan JE, Findlay CS (2003) The effects of adjacent land use on wetland amphibian species richness and community composition. Can J Fish Aquat Sci 60:1078–1094. doi:10.1139/f03-095

    Article  Google Scholar 

  • Houlahan JE, Findlay CS (2004) Estimating the ‘critical’ distance at which adjacent land-use degrades wetland water and sediment quality. Landscape Ecol 19:677–690. doi:10.1023/B:LAND.0000042912.87067.35

    Article  Google Scholar 

  • Houlahan JE, Keddy PA, Makkay K, Findlay CS (2006) The effects of adjacent land use on wetland species richness and community composition. Wetlands 26:79–96. doi:10.1672/0277-5212(2006)26[79:TEOALU]2.0.CO;2

    Article  Google Scholar 

  • Howeth JG, Leibold MA (2008) Planktonic dispersal dampens temporal trophic cascades in pond metacommunities. Ecol Lett 11:245–257. doi:10.1111/j.1461-0248.2007.01143.x

    Article  PubMed  Google Scholar 

  • Jenkins KM, Boulton AJ (2007) Detecting impacts and setting restoration targets in arid-zone rivers: aquatic micro-invertebrate responses to reduced floodplain inundation. J Appl Ecol 44:823–832. doi:10.1111/j.1365-2664.2007.01298.x

    Article  Google Scholar 

  • Johnson RK (2007) Special section: environmental assessment meets landscape ecology meets land use planning. Freshw Biol 52:907. doi:10.1111/j.1365-2427.2007.01779.x

    Article  Google Scholar 

  • Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennet A, Gurgman M, Cale P, Calhoun A, Cramer V, Cullen P et al (2008) A checklist of ecological management of landscapes for conservation. Ecol Lett 11:78–91

    PubMed  Google Scholar 

  • Luo HR, Smith LM, Allen BL, Haukos DA (1997) Effects of sedimentation on playa wetland volume. Ecol Appl 7:247–252. doi:10.1890/1051-0761(1997)007[0247:EOSOPW]2.0.CO;2

    Article  Google Scholar 

  • Ruttner-Kolisko A (1974) Plankton rotifers. Biology and taxonomy. In: Thienemann A (ed) Die Binnengewässer vol 26/1 Suppl.E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 1–146

    Google Scholar 

  • Sánchez B, Angeler DG (2007) Can fairy shrimps (Crustacea: Anostraca) structure zooplankton communities in temporary ponds? Mar Freshw Res 58:827–834. doi:10.1071/MF07024

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to CANOCO for windows, software for canonical community ordination (version 4.5). Microcomputer power, Ithaca

    Google Scholar 

  • Vandekerkhove J, Declerck S, Brendonck L, Conde-Porcuna JM, Jeppesen E, Sander Johansson L, De Meester L (2005) Uncovering hidden species: hatching diapausing eggs for the analysis of cladoceran species richness. Limnol Oceanogr Methods 3:399–407

    Google Scholar 

  • Velayos M, Carrasco MA, Cirujano S (1989) Las lagunas el Campo de Calatrava. Bot Complut 14:9–50

    Google Scholar 

  • Williams DD (2006) The biology of temporary waters. Oxford University Press, Oxford

    Google Scholar 

  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341. doi:10.1016/S0006-3207(03)00153-8

    Article  Google Scholar 

Download references

Acknowledgments

A. Velasco, B. Sánchez and M. Gutiérrez are acknowledged for their help throughout this study, and the land holders for permitting access to their properties. This study was supported by Junta de Comunidades de Castilla—La Mancha and European Community grants for regional development (FEDER; PAI-05-020) to DGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Angeler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, A.I., Viedma, O., Sánchez-Carrillo, S. et al. Local and landscape effects on temporary pond zooplankton egg banks: conservation implications. Biodivers Conserv 18, 2373–2386 (2009). https://doi.org/10.1007/s10531-009-9594-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9594-6

Keywords

Navigation