Skip to main content

Advertisement

Log in

Indicators for the on-farm assessment of crop cultivar and livestock breed diversity: a survey-based participatory approach

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Agrobiodiversity plays a fundamental role in guaranteeing food security. However, still little is known about the diversity within crop and livestock species: the genetic diversity. In this paper we present a set of indicators of crop accession and breed diversity for different farm types at farm-level, which may potentially supply a useful tool to assess and monitor farming system agrobiodiversity in a feasible and relatively affordable way. A generic questionnaire was developed to capture the information on crops and livestock in 12 European case study regions and in Uganda by 203 on-farm interviews. Through a participatory approach, which involved a number of stakeholders, eight potential indicators were selected and tested. Five of them are recommended as potentially useful indicators for agrobiodiversity monitoring per farm: (1) crop-species richness (up to 16 crop species), (2) crop-cultivar diversity (up to 15 crop cultivars, 1–2 on average), (3) type of crop accessions (landraces accounted for 3 % of all crop cultivars in Europe, 31 % in Uganda), (4) livestock-species diversity (up to 5 livestock species), and (5) breed diversity (up to five cattle and eight sheep breeds, on average 1–2).We demonstrated that the selected indicators are able to detect differences between farms, regions and dominant farm types. Given the present rate of agrobiodiversity loss and the dramatic effects that this may have on food production and food security, extensive monitoring is urgent. A consistent survey of crop cultivars and livestock breeds on-farm will detect losses and help to improve strategies for the management and conservation of on-farm genetic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631. doi:10.1007/s00299-008-0507-z

    Article  PubMed  CAS  Google Scholar 

  • Ahokas H, Manninen M-L (2000) Retrospecting genetic variation of finnish oat (Avena sativa) landraces and observations on revived lines grown prior to 1957. Genet Resour Crop Evol 47:345–352. doi:10.1023/a:1008731320865

    Article  Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31. doi:10.1016/s0167-8809(99)00028-6

    Article  Google Scholar 

  • Andersen A, Baldock D, Bennett H, Beaufoy G, Bignal E, Brouwer F, Elbersen B, Eiden G, Godeschalk F, McCracken D, Niuwenhuizen W, Van Eupen M, Hennekens S, Zervas G (2003) Developing a high nature value farming area indicator. Internal report for the European Environment Agency (EEA). Institute for European Environmental Policy (IEEP), Copenhagen

    Google Scholar 

  • Arndorfer M, Angelova S, Balázs K, Bogers MIM, Centeri C, Choisis J-P, Choisis N, Dennis P, Eiter S, Falusi E, Fjellstad W, Friedel JK, Geijzendorffer I, Gomiero T, Griffioen AJ, Guteva Y, Jongman R, Juárez E, Kainz M, Kelemen E, Lüscher G, Mayr J, Moreno G, Paoletti MG, Podmaniczky L, Sarthou J-P, Skutai J, Stoyanova S, Schneider M, Siebrecht N, Wolfrum S, Wilkes J, Zanetti T (2010) Delimitation of BioBio case study regions and the selection of case study farms. Deliverable 3.1 of the EU FP7 research project: Indicators for biodiversity in organic and low-input farming systems. BOKU, Vienna. http://www.biobio-indicator.org/deliverables/D31.pdf. Accessed 30 June 2014

  • BfN (2008) Nature data 2008. Federal agency for Nature Conservation (BfN), Bonn

    Google Scholar 

  • BioBio (2012) Biodiversity indicators for European farming systems. Agroscope Reckenholz-Tänikon Research Station ART, Zurich. www.biobio-indicator.org. Accessed 30 June 2014

  • Bioversity International (2010) Crop descriptors. Bioversity International, Maccarese. http://www.bioversityinternational.org/e-library/publications/categories/descriptors/. Accessed 30 June 2014

  • Bonneuil C, Goffaux R, Bonnin I, Montalent P, Hamon C, Balfouriri F, Goldringer I (2012) A new integrative indicator to assess crop genetic diversity. Ecol Indic 23:280–289. doi:10.1016/j.ecolind.2012.04.002

    Article  Google Scholar 

  • Brookfield H, Stocking M (1999) Agrodiversity: definition, description and design. Global Environ Change 9:77–80. doi:10.1016/S0959-3780(99)00004-7

    Article  Google Scholar 

  • Brown AHD (2010) Indicators of genetic diversity, genetic erosion and genetic vulnerability for plant genetic resources for food and agriculture. The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agricultural Organization of the United Nation (FAO), Rome

    Google Scholar 

  • Brush SB (2004) Farmers’ bounty: locating crop diversity in the contemporary world. Yale University Press, New Haven

    Book  Google Scholar 

  • Buiteveld J, van Veller MGP, Hiemstra SJ, ten Brink B, Tekelenburg T (2009) An exploration of monitoring and modelling agrobiodiversity: from indicator development towards modelling biodiversity in agricultural systems on the sub-specific level. Report 2009/13. Centre for Genetic Resources (CGN), Wageningen

    Google Scholar 

  • CBD (2003) Proposed biodiversity indicators relevant to the 2010 target (Meeting document: UNEP/CBD/SBSTTA/9/INF/26). In: Ninth meeting of the subsidiary body on scientific, technical and technological advice (SBSTTA 9). Convention on Biological Diversity (CBD), Montreal

  • CBD (2010) Implementation of strategic plan for biodiversity 2011–2020, including the Aichi Biodiversity Targets. Convention on Biological Diversity (CBD), Montreal. http://www.cbd.int/sp/targets/default.shtml. Accessed 30 June 2014

  • Cebolla-Cornejo J, Soler S, Nuez F (2007) Genetic erosion of traditional varieties of vegetable crops in Europe: tomato cultivation in Valencia (Spain) as a case study. Int J Plant Prod 1:113–128

    Google Scholar 

  • Cowling WA (2007) Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crops Res 104:103–111. doi:10.1016/j.fcr.2006.12.014

    Article  Google Scholar 

  • DAD-IS (2013) Domestic Animal Diversity Information System. Food and Agricultural Organization of the United Nation (FAO), Rome. http://dad.fao.org/. Accessed 30 June 2014

  • Dennis P, Arndorfer M, Balázs K, Bailey D, Boller B, Bunce RGH, Centeri C, Corporaal A, Cuming D, Deconchat M, Dramstad W, Elyakime B, Falusi E, Fjellstad W, Fraser MD, Freyer B, Friedel JK, Geijzendorffer I, Jongman R, Kainz M, Marcos GM, Gomiero T, Grausgruber-Gröger S, Herzog F, Hofer G, Jeanneret P, Kelemen E, Kölliker R, Moakes SR, Nicholas P, Paoletti MG, Podmaniczky L, Pointereau P, Sarthou J-P, Siebrecht N, Sommaggio D, Stoyanova S, Teufelbauer N, Viaggi D, Vialatte A, Walter T, Widmer F, Wolfrum S (2009) Conceptual foundations for biodiversity indicator selection for organic and low-input farming systems. Deliverable 2.1 of the EU FP7 Project BioBio. http://www.biobio-indicator.org/deliverables/D21.pdf. Accessed 30 June 2014

  • EEA (2007) Halting the loss of biodiversity by 2010: proposal for a first set of indicators to monitor progress in Europe. EEA Technical report No 11/2007. European Environmental Agency (EEA), Copenhagen

  • EFABIS (2014) European Farm Animal Biodiversity Information System. European Federation of Animal Science (EAAP), Milan. http://www.eaap.org/content/efabis.htm. Accessed 30 June 2014

  • FAO (1993) Harvesting nature’s diversity. Food and Agricultural Organization of the United Nation (FAO), Rome. http://www.fao.org/DOCREP/004/V1430E/V1430E00.HTM. Accessed 30 June 2014

  • FAO (2002) Review and development of indicators for genetic diversity, genetic erosion and genetic vulnerability (GDEV): summary report of a joint FAO, IPGRI workshop (Rome, 11–14 September, 2002). Food and Agricultural Organization of the United Nation (FAO), Rome

    Google Scholar 

  • FAO (2007) The state of the world’s animal genetic resources for food and agriculture. Food and Agricultural Organization of the United Nation (FAO), Rome. http://www.fao.org/docrep/010/a1250e/a1250e00.htm. Accessed 30 June 2014

  • FAO (2013a) Status and trends of animal genetic resources—2012. Food and Agricultural Organization of the United Nation (FAO), Rome. http://www.fao.org/docrep/meeting/027/mg046e.pdf. Accessed 30 June 2014

  • FAO (2013b) Fourteenth regular session of the Commission on Genetic Resources for Food and Agriculture (Rome, 15–19 April). Food and Agricultural Organization of the United Nation (FAO), Rome

  • FAOSTAT (2012) The Statistics Division of the FAO. Food and Agricultural Organization of the United Nation (FAO), Rome. http://faostat3.fao.org/home/index.html#VISUALIZE. Accessed 30 June 2014

  • Ford-Lloyd BV, Brar D, Khush GS, Jackson MT, Virk PS (2008) Genetic erosion over time of rice landrace agrobiodiversity. Plant Gene Resour 7:163–168. doi:10.1017/S1479262108137935

    Article  Google Scholar 

  • Fowler C, Hodgkin T (2004) Plant genetic resources for food and agriculture: Assessing global availability. Annu Rev Environ Resour 29:143–179. doi:10.1146/annurev.energy.29.062403.102203

    Article  Google Scholar 

  • Fufa H, Baenziger PS, Beecher BS, Dweikat I, Graybosch RA, Eskridge KM (2005) Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica 145:133–146. doi:10.1007/s10681-005-0626-3

    Article  CAS  Google Scholar 

  • Gomiero T, Pimentel D, Paoletti MG (2011) Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit Rev Plant Sci 30:95–124. doi:10.1080/07352689.2011.554355

    Article  Google Scholar 

  • Groeneveld LF, Lenstra JA, Toro MA, Scherf B, Pilling D, Negrini R, Finlay EK, Jianlin H, Groeneveld E, Weigend S, The GLOBALDIV Consortium (2010) Genetic diversity in farm animals—a review. Anim Genet 41:6–31. doi:10.1111/j.1365-2052.2010.02038.x

    Article  Google Scholar 

  • Hajjar R, Jarvis DI, Gemmill-Herren B (2008) The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosyst Environ 123:261–270. doi:10.1016/j.agee.2007.08.003

    Article  Google Scholar 

  • Hall AJ, Richards RA (2013) Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Res 143:18–33. doi:10.1016/j.fcr.2012.05.014

    Article  Google Scholar 

  • Hammer K, Knupffer H, Xhuveli L, Perrino P (1996) Estimating genetic erosion in landraces—two case studies. Genet Resour Crop Evol 43:329–336. doi:10.1007/BF00132952

    Article  Google Scholar 

  • Herzog F, Balázs K, Dennis P, Friedel JK, Jeanneret P, Geijzendorffer I, Kainz M, Pointereau P (2012) Biodiversity indicators for European farming systems, vol 17. ART-Schriftenreihe, Zurich

    Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol Ecol 8:S159–S173. doi:10.1046/j.1365-294X.1999.00799.x

    Article  Google Scholar 

  • Jarvis DI, Brown AHD, Cuong PH, Collado-Panduro L, Latournerie-Moreno L, Gyawali S, Tanto T, Sawadogo M, Mar I, Sadiki M, Hue NT-N, Arias-Reyes L, Balma D, Bajracharya J, Castillo F, Rijal D, Belqadi L, Rana R, Saidi S, Ouedraogo J, Zangre R, Rhrib K, Chavez JL, Schoen DJ, Sthapit B, De Santis P, Fadda C, Hodgkin T (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci 105:5326–5331. doi:10.1073/pnas.0800607105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Last L, Widmer F, Fjellstad W, Stoyanova S, Kölliker R (2013) Genetic diversity of natural orchardgrass Dactylis glomerata L. populations in three regions in Europe. BMC Genet 14:102. doi:10.1186/1471-2156-14-102

    Article  PubMed  Google Scholar 

  • Love B, Spaner D (2007) Agrobiodiversity: its value, measurement, and conservation in the context of sustainable agriculture. J Sustain Agric 31:53–82. doi:10.1300/J064v31n02_05

    Article  Google Scholar 

  • Malécot G (1947) Les mathématiques de l’hérédité. Masson et Cie, Paris

    Google Scholar 

  • Martín MA, Navarro-Cerrillo R, Ortega P, Alvarez JB (2009) The use of cotyledon proteins to assess the genetic diversity in sweet holm oak. J For Sci 55:526–531

    Google Scholar 

  • Martín-Burriel I, Rodellar C, Cañón J, Cortés O, Dunner S, Landi V, Martínez- Martínez A, Gama LT, Ginja C, Penedo MCT, Sanz A, Zaragoza P, Delgado JV (2011) Genetic diversity, structure, and breed relationships in Iberian cattle. J Anim Sci 89:893–906. doi:10.2527/jas.2010-3338

    Article  PubMed  Google Scholar 

  • Martyniuk E, Pilling D, Scherf B (2010) Indicators: do we have effective tools to measure trends in genetic diversity of domesticated animals? Anim Gene Resour 47:31–43. doi:10.1017/S2078633610001013

    Article  Google Scholar 

  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci 43:1235–1248. doi:10.2135/cropsci2003.1235

    Article  Google Scholar 

  • OECD (2008) Environmental performance of agriculture in OECD countries since 1990: 8. Biodiversity (genetic, wild species and ecosystem diversity). Organisation for Economic Co-operation and Developement (OECD), Paris. http://stats.oecd.org/viewhtml.aspx?QueryName=522&QueryType=View. Accessed 30 June 2014

  • Plieninger T, Rolo V, Moreno G (2010) Large-scale patterns of Quercus ilex, Quercus suber, and Quercus pyrenaica regeneration in Central-Western Spain. Ecosystems 13:644–660. doi:10.1007/s10021-010-9345-2

    Article  CAS  Google Scholar 

  • Pointereau P, Langevin B (2012) Report on the contribution of the stakeholders to the selection of the biodiversity indicators for organic and low input farming systems (Deliverable D7.1). BioBio Indicators for biodiversity in organic and low-input farming systems (Project No. 227161). Solagro, Toulouse. http://www.biobio-indicator.org/deliverables/D713.pdf. Accessed 30 June 2014

  • ProSpecieRara (2013) Tiere. Schweizerische Stiftung für die kulturhistorische und genetische Vielfalt von Pflanzen und Tieren, Basel. http://www.prospecierara.ch/de/tiere. Accessed 30 June 2014

  • R Development Core Team (2011) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.r-project.org/. Accessed 30 June 2014

  • Simpson EH (1949) Measurement of diversity. Nature 163:688. doi:10.1038/163688a0

    Article  Google Scholar 

  • Teklu Y, Hammer K (2006) Farmers’ perception and genetic erosion of tetraploid wheats landraces in Ethiopia. Genet Resour Crop Evol 53:1099–1113. doi:10.1007/s10722-005-1145-8

    Article  Google Scholar 

  • Turner N, Luczaj L, Migliorini P, Pieroni AL, Dreon AL, Sacchetti LE, Paoletti MG (2011) Edible and tended wild plants, traditional ecological knowledge and agroecology. Crit Rev Plant Sci 30:198–225. doi:10.1080/07352689.2011.554492

    Article  Google Scholar 

  • Tushemerehe WK, Kashaija IN, Tinzaara W, Nankinga C, New S (2001) Banana production manual: a guide to successful banana production in Uganda. National Agricultural Research Organisation (NARO), Entebbe

  • van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2010) Genetic erosion in crops: concept, research results and challenges. Plant Gene Resour 8:1–15. doi:10.1017/S1479262109990062

    Article  Google Scholar 

  • van Esbroeck A, Bowman DT, Calhoun DS, May OL (1998) Changes in the genetic diversity of cotton in the USA from 1970 to 1995. Crop Sci 38:33–37. doi:10.2135/cropsci1998.0011183X003800010006x

    Article  Google Scholar 

  • Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22. doi:10.1016/S0167-8809(97)00150-3

    Article  Google Scholar 

  • Vavilov N (1926) Studies on the origin of cultivated plants. Bull Appl Bot Plant Breed 26:139–248

    Google Scholar 

  • Veteläinen M, Negri V, Maxted N (2009) European landraces: on-farm conservation managment and use. Bioversity Technical Bulletin No. 15. Bioversity International, Rome

  • Wilson EO (1988) Biodiversity. The National Academies Press, Washington

    Google Scholar 

  • Woelders H, Zuidberg CA, Hiemstra SA (2006) Animal genetic resources conservation in the Netherlands and Europe: poultry perspective. Poult Sci 85:216–222. doi:10.1093/ps/85.2.216

    Article  PubMed  CAS  Google Scholar 

  • Zhu YY, Chen HR, Fan JH, Wang YY, Li Y, Chen JB, Fan JX, Yang SS, Hu LP, Leung H, Mew TW, Teng PS, Wang ZH, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–722. doi:10.1038/35021046

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the EU-project ‘BioBio - Indicators for biodiversity in organic and low-input farming systems’ (EU Seventh Framework Program [227161]). We appreciate the collaboration of all partners who accomplished the interviews and thank all farmers involved for their collaboration and their willingness to answer all our questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Kölliker.

Additional information

Communicated by Anurag chaurasia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4127 kb)Suppl.1 Genetic Diversity Questionnaire

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Last, L., Arndorfer, M., Balázs, K. et al. Indicators for the on-farm assessment of crop cultivar and livestock breed diversity: a survey-based participatory approach. Biodivers Conserv 23, 3051–3071 (2014). https://doi.org/10.1007/s10531-014-0763-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0763-x

Keywords

Navigation