Skip to main content
Log in

To catch or to sight? A comparison of demographic parameter estimates obtained from mark-recapture and mark-resight models

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Accurate assessments of population parameters, such as survival and abundance, are critical for effective wildlife conservation. In order for wildlife managers to undertake long-term monitoring of populations, the data collection must be as cost-effective as possible. Two demographic modelling techniques commonly used are mark-recapture and mark-resight. Mark-resight can be used in conjunction with biotelemetry methods and offers a more cost effective alternative to the traditional mark-recapture models. However, there has been no empirical comparison of the demographic parameters obtained from the two modelling techniques. This study used photographs of natural markings to individually identify wobbegong sharks (Orectolobus maculatus) sighted during underwater surveys over a 2 year period, during eight distinct sampling periods, and analysed with Pollock’s robust design mark-recapture models. These estimates were then compared, using z tests, with Poisson-lognormal mark-resight models that used resightings of sharks previously tagged with telemetry transmitters, and the telemetry data to calculate the number of marked animals present in each sampling period. Sharks were categorised into four groups according to their sex and age-class (adult/juvenile). The results indicated that there was a high degree of transience in the population, with 62 % of sharks only being sighted in one sampling period. Based on normalized Akaike weights, there was no single ‘best’ model for either type of modelling technique and model averaging was used to determine the demographic estimates. Both models showed higher abundance of wobbegongs in the austral spring and summer seasons, however, the models produced statistically different results for five of the eight sampling periods. The mark-recapture model estimated apparent survival between 78 and 95 %, whereas the mark-resight models estimated it between 48 and 97 %. Crucially, there was no statistical difference between the survival estimates from corresponding sex/age-class. The temporary emigration parameters differed substantially between the model types. The mark-recapture model showed support for Markovian movement, whereas the mark-resight supported random emigration. The timing of the tagging events likely biased the abundance and temporary emigration parameters estimated by mark-resight models and must be taken into consideration when designing a mark-resight study. Despite this, this study shows that robust demographic estimates, that are comparable to labour intensive mark-recapture estimates, can still be obtained using mark-resight methods. Given the substantial increase in biotelemetry studies of medium and large sized vertebrates, mark-resight models may play an important future role in estimating demographic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnason AN, Mills KH (1981) Bias and loss of precision due to tag loss in Jolly-Seber estimates for mark-recapture experiments. Can J Fish Aquat Sci 38:1077–1095

    Article  Google Scholar 

  • Bradshaw CJA, Mollet HF, Meekan MG (2007) Inferring population trends for the world’s largest fish from mark-recapture estimates of survival. J Anim Ecol 76:480–489

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodal inference: a practical information–theoretic approach. Springer, New York

    Google Scholar 

  • Carraro R, Gladstone W (2006) Habitat preferences and site fidelity of the ornate wobbegong shark (Orectolobus ornatus) on rocky reefs of New South Wales. Pac Sci 60:207–217

    Article  Google Scholar 

  • Castro ALF, Rosa RS (2005) Use of natural marks on population estimates of the nurse shark, Ginglymostoma cirratum, at Atol das Rocas Biological Reserve, Brazil. Environ Biol Fish 72:213–221

    Article  Google Scholar 

  • Conn PB, Kendall WL, Samuel MD (2004) A general model for the analysis of mark-resight, mark-recapture, and band-recovery data under tag loss. Biometrics 60:900–909

    Article  PubMed  Google Scholar 

  • Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol 19:334–343

    Article  PubMed  Google Scholar 

  • Department of Environment, CCAWN (2010) Cabbage Tree Bay Aquatic Reserve: draft fisheries management (Aquatic Reserve) regulation 2009 and implementation strategy. Department of Environment (ed.), Sydney, NSW

  • Dudgeon CL, Noad MJ, Lanyon JM (2008) Abundance and demography of seasonal aggregation of zebra sharks Stegostoma fasciatum. Mar Ecol Prog Ser 368:269–281

    Article  Google Scholar 

  • Dudgeon CL, Broderick D, Ovenden JR (2009) IUCN classification zones concord with, but underestimate, the population genetic structure of the zebra shark Stegostoma fasciatum in the Indo-West Pacific. Mol Ecol 18:248–261

    Article  CAS  PubMed  Google Scholar 

  • Froget G, Gautier-Clerc M, Le Maho Y, Handrich Y (1998) Is penguin banding harmless? Polar Biol 20:409–413

    Article  Google Scholar 

  • Goffe WL, Ferrier GD, Rogers J (1994) Global optimization of statistical functions with simulated annealing. J Econ 60:65–99

    Article  Google Scholar 

  • Hebblewhite M, Haydon DT (2010) Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philos Trans R Soc B 365:2303–2312

    Article  Google Scholar 

  • Heupel MR, Hueter RE (2001) Use of an automated acoustic telemetry system to passively track juvenile blacktip shark movements. In: Sibert NJ Jr (ed) Electronic tagging and tracking in marine fisheries. Kluwer, Netherlands

    Google Scholar 

  • Heupel MR, Semmens JM, Hobday AJ (2006) Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays. Mar Freshw Res 57:1–13

    Article  Google Scholar 

  • Heyman WD, Graham RT, Kjerfve BR, Johannes RE (2001) Whale sharks Rhincodon typus aggregate to feed on fish spawn in Belize. Mar Ecol Prog Ser 215:275–282

    Article  Google Scholar 

  • Huggins RM (1989) On the statistical analysis of capture experiments. Biometrika 76:133–140

    Article  Google Scholar 

  • Huveneers C, Harcourt RG, Otway NM (2006) Observation of localised movements and residence times of the wobbegong shark Orectolobus halei at Fish Rock, NSW, Australia. Cybium 30:103–111

    Google Scholar 

  • Huveneers C, Walker TI, Otway NM, Harcourt RG (2007) Reproductive synchrony of three sympatric species of wobbegong shark (genus Orectolobus) in New South Wales, Australia: reproductive parameter estimates necessary for population modelling. Mar Freshw Res 58:765–777

    Article  Google Scholar 

  • Huveneers C, Stead J, Bennett MB, Lee KA, Harcourt RG (2013) Age and growth determination of three sympatric wobbegong sharks: how reliable is growth band periodicity in Orectolobidae? Fish Res 147:413–425

    Article  Google Scholar 

  • Kendall WL, Nichols JD (1995) On the use of secondary capture–recapture samples to estimate temporary emigration and breeding proportions. J Appl Stat 22:751–762

    Article  Google Scholar 

  • Kendall WL, Nichols JD, Hines JE (1997) Estimating temporary emigration using capture–recapture data with Pollock’s robust design. Ecology 78:563–578

    Google Scholar 

  • Last PR, Stevens JD (2009) Sharks and rays of Australia. CSIRO, Melbourne

    Google Scholar 

  • Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Lele SR, Dennis B, Lutscher F (2007) Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. Ecol Lett 10:551–563

    Article  PubMed  Google Scholar 

  • Marshall AD, Pierce SJ (2012) The use and abuse of photographic identification in sharks and rays. J Fish Biol 80:1361–1379

    Article  CAS  PubMed  Google Scholar 

  • Marshall AD, Dudgeon C, Bennett MB (2011) Size and structure of a photographically identified population of manta rays Manta alfredi in southern Mozambique. Mar Biol 158:1111–1124

    Article  Google Scholar 

  • Mcclintock BT, White GC (2007) Bighorn sheep abundance following a suspected pneumonia epidemic in Rocky Mountain National Park. J Wildl Manag 71:183–189

    Article  Google Scholar 

  • Mcclintock BT, White GC (2009) A less field-intensive robust design for estimating demographic parameters with mark-resight data. Ecology 90:313–320

    Article  PubMed  Google Scholar 

  • Mcclintock B, White G (2012) From NOREMARK to MARK: software for estimating demographic parameters using mark-resight methodology. J Ornithol 152:641–650

    Article  Google Scholar 

  • Millspaugh JJ, Kesler DC, Kays RW, Gitzen RA, Schulz JH, Rota CT, Bodinof CM, Belant JL, Keller BJ (2012) Wildlife radiotelemetry and remote monitoring. In: Silvy NJ (ed) The wildlife techniques manual Baltimore. The John Hopkins University Press, Maryland

    Google Scholar 

  • Minta S, Mangel M (1989) A simple population estimate based on simulation for capture–recapture and capture-resight data. Ecology 70:1738–1751

    Article  Google Scholar 

  • Mintzer VJ, Martin AR, Da Silva VMF, Barbour AB, Lorenzen K, Frazer TK (2013) Effect of illegal harvest on apparent survival of amazon river dolphins (Inia geoffrensis). Biol Conserv 158:280–286

    Article  Google Scholar 

  • Norris KEN (2004) Managing threatened species: the ecological toolbox, evolutionary theory and declining-population paradigm. J Appl Ecol 41:413–426

    Article  Google Scholar 

  • Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:7–135

    Google Scholar 

  • Pollock KH (1982) A capture–recapture design robust to unequal probability of capture. J Wildl Manag 46:752–757

    Article  Google Scholar 

  • Pollock KH, Nichols JD, Brownie C, Hines JE (1990) Statistical inference for capture–recapture experiments. Wildl Monogr 107:1–97

    Google Scholar 

  • Reed ET, Gauthier G, Pradel R, Sheaffer SE (2005) Effects of neck bands on reproduction and survival of female greater snow geese. J Wildl Manag 69:91–100

    Article  Google Scholar 

  • Rowat D, Speed CW, Meekan MG, Gore MA, Bradshaw CJ (2009) Population abundance and apparent survival of the vulnerable whale shark Rhincodon typus in the Seychelles aggregation. Oryx 43:591–598

    Article  Google Scholar 

  • Servanty S, Gaillard J-M, Ronchi F, Focardi S, Baubet É, Gimenez O (2011) Influence of harvesting pressure on demographic tactics: implications for wildlife management. J Appl Ecol 48:835–843

    Article  Google Scholar 

  • Speakman TR, Lane SM, Schwacke LH, Fair PA, Zolman ES (2010) Mark-recapture estimates of seasonal abundance and survivorship for bottlenose dolphins (Tursiops truncatus) near Charleston, South Carolina, USA. J Cetacean Res Manag 11:153–162

    Google Scholar 

  • Speed CW, Meekan MG, Field IC, Mcmahon CR, Stevens JD, Mcgregor F, Huveneers C, Berger Y, Bradshaw CJA (2011) Spatial and temporal movement patterns of a multi-species coastal reef shark aggregation. Mar Ecol Prog Ser 429:261–275

    Article  Google Scholar 

  • Suthers IM, Young JW, Baird ME, Roughan M, Everett JD, Brassington GB, Byrne M, Condie SA, Hartog JR, Hassler CS (2011) The strengthening East Australian Current, its eddies and biological effects: an introduction and overview. Deep Sea Res II 58:538–546

    Article  Google Scholar 

  • Taylor J (1996) Seasonal occurrence, distribution and movements of the whale shark, Rhincodon typus, at Ningaloo Reef, Western Australia. Mar Freshw Res 47:637–642

    Article  Google Scholar 

  • Tomkiewicz SM, Fuller MR, Kie JG, Bates KK (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc B 365:2163–2176

    Article  Google Scholar 

  • Underwood AJ, Kingsford MJ, Andrew NL (1991) Patterns in shallow marine assemblages along the coast of New South Wales. Aust J Ecol 6:231–249

    Article  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139

    Article  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San Diego

    Google Scholar 

  • Yoshizaki J, Pollock KH, Brownie C, Webster RA (2009) Modeling misidentification errors in capture–recapture studies using photographic identification of evolving marks. Ecology 90:3–9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This Project was funded by Grants from PADI Aware, SEA LIFE Conservation Fund and co-investment from the Office of Environment NSW. Thanks to the Integrated Marine Observing System- Australian Animal Tagging and Monitoring System (IMOS-AATAMS) for in-kind contributions and in particular Andrew Boomer for his on-going support. KL was supported by a Macquarie University Research of Excellence Scholarship. Thanks to all the volunteers who helped with the collection of the data. This Project was approved by the NSW Fisheries Animal Care and Ethics Committee (ACEC ref: 07/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Lee.

Additional information

Communicated by Simon Ingram.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31002 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.A., Huveneers, C., Gimenez, O. et al. To catch or to sight? A comparison of demographic parameter estimates obtained from mark-recapture and mark-resight models. Biodivers Conserv 23, 2781–2800 (2014). https://doi.org/10.1007/s10531-014-0748-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0748-9

Keywords

Navigation