Skip to main content

Advertisement

Log in

Accessibility predicts structural variation of Andean Polylepis forests

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

High Andean mountain forests, formed almost purely by trees of the genus Polylepis, occur nowadays as scattered remnant patches of a more continuous past distribution. Apparently, the destruction of Polylepis forests has mainly been caused by millennia of human disturbance, although forest distribution may also have fluctuated according to prevailing climatic conditions. Nowadays, the remaining Polylepis forest stands are still threatened by anthropogenic disturbance, which gradually degrades the forests. The aim of our study was to test if the structural variation of Polylepis forest patches, as an indication of forest degradation, can be predicted by accessibility to humans. The study was carried out in the Cordilleras Vilcanota and Vilcabamba, Cuzco, Peru. We used indices of forest biomass and proportion of vegetative regeneration as forest structural variables. First we examined the dependence of these variables on elevation with linear regressions. We did this separately for different Polylepis species and combining the species within humid and dry areas. Thereafter, we used the residual forest structural variation to assess possible relationships with accessibility, quantified as geographical distance to the nearest village, road or market centre. We found several significant relationships between the structural variables and accessibility, which may reflect different landscape related preferences in forest use. The results suggest accessibility can be used for rapid spatial prediction of Polylepis forest degradation, which facilitates identifying Polylepis forests that are potentially the most degraded and therefore in the most urgent need of restoration or conservation activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan JD, Brenner AJ, Erazo J, Fernandez L, Flecker AS, Karwan DL, Segnini S, Taphorn DC (2002) Land use in watersheds of Venezuelan Andes: a comparative analysis. Conserv Biol 16(2):238–527

    Article  Google Scholar 

  • Aucca C, Ramsay PM (2005) Management of biodiversity and land use in southern Peru. ECOAN’s activities to help conserve Polylepis woodlands. Mt Res Dev 25:287–289

    Article  Google Scholar 

  • Binford MW, Kolata AL, Brenner M, Janusek JW, Seddon MT, Abbott M, Curtis JH (1997) Quatern Res 47:235–248

    Article  Google Scholar 

  • Chepstow-Lusty AJ, Winfield M (2000) Inca agroforestry: lessons from the past. Ambio 29(6):322–328

    Google Scholar 

  • Chepstow-Lusty AJ, Bennett KD, Switsur VR, Kendall A (1996) 4000 years of human impact and vegetation change in the central Peruvian Andes—with events paralleling the Maya record? Antiquity 70:824–833

    Google Scholar 

  • Cierjacks A, Wesche K, Hensen I (2007a) Potential lateral expansion of Polylepis forest fragments in central Ecuador. For Ecol Manag 242:477–486

    Article  Google Scholar 

  • Cierjacks A, Rühr NK, Wesche K, Hensen I (2007b) Effects of altitude and livestock on the regeneration of two tree line forming Polylepis species in Ecuador. Plant Ecol 194:207–221

    Article  Google Scholar 

  • Cierjacks A, Iglesias JE, Wesche K, Hensen I (2007c) Impact of sowing, canopy cover and litter on seedling dynamics of two Polylepis species at upper tree lines in central Ecuador. J Trop Ecol 23:309–318

    Article  Google Scholar 

  • Cingolani AM, Renison D, Tecco PA, Gurvich DE, Cabido M (2008) Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. J Biogeogr 35:538–551

    Article  Google Scholar 

  • Coblentz D, Keating PL (2008) Topographic controls on the distribution of tree islands in the high Andes of south-western Ecuador. J Biogeogr 35:2026–2038

    Article  Google Scholar 

  • Cuevas JG (2000) Tree recruitment at the Nothofagus pumilio alpine tree line in Tierra del Fuego, Chile. J Ecol 88:840–855

    Article  Google Scholar 

  • Dale MRT, Dixon P, Fortin M-J, Legendre P, Myers DE, Rosenberg MS (2002) Conceptual and mathematical relationships among methods for spatial analysis. Ecography 25(5):558–577

    Article  Google Scholar 

  • Dirzo R, García CM (1992) Rates of deforestation in Los Tuxtlas, a neotropical area in southeast Mexico. Conserv Biol 6:84–90

    Article  Google Scholar 

  • Dobyns HF (1966) An appraisal of techniques with a new hemispheric estimate (estimating aboriginal American population). Curr Anthropol 7(4):395–416

    Article  Google Scholar 

  • Ellenberg H (1958) Wald oder Steppe? Die natürliche Pflanzendecke der Anden Perus. Umschau 1958:645–681

    Google Scholar 

  • Ellenberg H (1979) Man’s influence on tropical mountain ecosystems in South America. J Ecol 67:401–416

    Article  Google Scholar 

  • Etter A, Villa LA (2000) Andean forests and farming systems in part of the Eastern Cordillera (Colombia). Mt Res Dev 20(3):236–245

    Article  Google Scholar 

  • Fearnside PM (1980) Land use allocation of the transamazon highway colonist of Brazil and its relation to human carrying capacity. In: Barbira-Scazzochio F (ed) Land, people, and planning in contemporary Amazonia. Centre of Latin American Studies, University of Cambridge, Cambridge, UK, pp 114–138

    Google Scholar 

  • Fjeldså J (1992) Biogeography of the birds of the Polylepis woodlands of the Andes. In: Balslev H, Luteyn JL (eds) Páramo. An Andean ecosystem under human influence. Academic Press, Padstow, Great Britain

    Google Scholar 

  • Fjeldså J (1993) Avifauna of the Polylepis woodlands of the Andean highlands: the efficiency of basing conservation priorities on patterns of endemism. Bird Conserv Int 3:37–55

    Article  Google Scholar 

  • Fjeldså J (2002) Polylepis forests—vestiges of a vanishing ecosystem in the Andes. Ecotropica 8:111–123

    Google Scholar 

  • Fjeldså J, Kessler M (1996) Conserving the biological diversity of Polylepis woodlands of the highlands of Peru and Bolivia. A contribution to sustainable natural resource management in the Andes. NORDECO, Copenhagen

    Google Scholar 

  • Garcia-Nuñez C et al (2004) Leaf gas exchange and water relations in Polylepis tarapacana at extreme altitudes in the Bolivian Andes. Photosynthetica 42(1):133–138

    Article  Google Scholar 

  • Germino MJ, Smith WK (2002) Conifer seedling distribution and survival in an alpine treeline ecotone. Plant Ecol 162:157–168

    Article  Google Scholar 

  • Gosling WD, Hanselman JA, Knox C, Valencia BG, Bush MB (2009) Long-term drivers of change in Polylepis woodland distribution in the central Andes. J Veg Sci 20:1041–1052

    Article  Google Scholar 

  • Hagaman DJ (2006) Conservation and use of Polylepis pepei woodlands in the Apolobamba mountains of Bolivia. MSc thesis, University of Wisconsin-Madison

  • Hertel D, Wesche K (2008) Tropical moist Polylepis stands at the treeline in East Bolivia: the effect of elevation on stand microclimate, above- and below-ground structure, and regeneration. Trees 22:303–315

    Article  Google Scholar 

  • Hoch G, Körner C (2005) Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol 19:941–951

    Article  Google Scholar 

  • IUCN (2010) IUCN red list of threatened species. Version 2010.1. www.iucnredlist.org

  • Jameson JS, Weaver RE, Ramsay PM (2007) Changes in high-altitude Polylepis forest cover and quality in the Cordillera de Vilcanota, Perú, 1956–2005. Biol Conserv 138:38–46

    Article  Google Scholar 

  • Kessler M (1995) Present and potential distribution of Polylepis (Rosaceae) forests in Bolivia. In: Churchill, SP, Balslev H, Forero E, Luteyn JL(eds) Biodiversity and conservation of neotropical montane forests. New York Botanical Garden, Bronx, pp 281–294

  • Kessler M (2000) Observations on a human-induced fire event at a humid timberline in the Bolivian Andes. Ecotropica 6:89–93

    Google Scholar 

  • Kessler M (2002) The “Polylepis problem”: where do we stand? Ecotropica 8:97–110

    Google Scholar 

  • Kessler M, Driesch P (1993) Causas e historia de la destruccion de bosques altoandinos en Bolivia. Ecología en Bolivia 21:1–18

    Google Scholar 

  • Kessler M, Böhner J, Kluge J (2007) Modelling tree height to assess climatic conditions at tree lines in the Bolivian Andes. Ecol Model 207:223–233

    Article  Google Scholar 

  • Laegaard S (1992) Influence of fire in the grass páramo vegetation of Ecuador. In: Balslev H, Luteyn JL (eds) Paramo. An Andean ecosystem under human influence. Academic Press, Padstow, Great Britain, pp 151–170

    Google Scholar 

  • Lazcano JM, Espinoza D (2001) Tendencia en el uso de la leña en dos communidades con bosques de Polylepis con énfasis en variables económicas. Rev Bol Ecol Conserv Amb 9:61–77

    Google Scholar 

  • Legendre P, Vaudor A (1991) The R-package: multidimensional analysis, spatial analysis. Département de sciences biologiques. Université de Montréal, Montreal

    Google Scholar 

  • Lloyd H, Marsden SJ (2008) Bird community variation across Polylepis woodland fragments and matrix habitats: implications for biodiversity conservation within a high Andean landscape. Biodivers Conserv 17:2645–2660

    Article  Google Scholar 

  • Maxwell K (2004) Lost cities and exotic cows: constructing the space of nature and culture in the Machu Picchu Historic Sanctuary, Peru. Doctoral dissertation, Yale University School of Forestry and Environmental Studies

  • Purcell J, Brelsford A (2004) Reassessing the causes of decline of Polylepis a tropical subalpine forest. Ecotropica 10:155–158

    Google Scholar 

  • Rada F, Azócar A, Briceño B, Gonzáles J, Garcia-Nuñez C (1996) Carbon and water balance in Polylepis sericea, a tropical treeline species. Trees 10:218–222

    Google Scholar 

  • Renison D, Cingolani AM (1998) Experiencias en germinación y reproducción vegetativa applicados a la reforestación con Polylepis australis (Rosaceae) en las Sierras Grandes de Córdoba Agrentina. AgriScientica 15:47–53

    Google Scholar 

  • Renison D, Hensen I, Cingolani AM (2004) Anthropogenic soil degradation affects seed viability in Polylepis australis mountain forests of central Argentina. For Ecol Manag 196:327–333

    Article  Google Scholar 

  • Renison D, Hensen I, Suarez R, Cingolani AM (2006) Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence? J Biogeogr 33:876–887

    Article  Google Scholar 

  • Renison D, Hensen I, Suarez R, Cingolani AM, Marcora P, Giorgis MA (2010) Soil conservation in Polylepis mountain forests of Central Argentina: is livestock reducing our natural capital? Aust Ecol. 35:435

    Article  Google Scholar 

  • Renison D, Hensen I, Suarez R (2011) Landscape structural complexity of high-mountain Polylepis australis forests: a new aspect of restoration goals. Restor Ecol. doi:10.1111/j.1526-100X.2009.00555.x

  • Servat GP, Mendoza W, Ochoa JA (2002) Flora y fauna de cuatro bosques de Polylepis (Rosaceae) en la cordillera del Vilcanota (Cusco, Peru). Ecolgía Aplicada 1(1):25–35

    Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of Matrix correspondence. Syst Zool 35:627–632

    Article  Google Scholar 

  • Stadtmüller T (1987) Cloud forests in the humid tropics. The United Nations University, Tokio, p 81

    Google Scholar 

  • UNEP-WCMC (2004) United Nations Environment Programme. World Conservation Monitoring Center. http://www.unep-wcmc.org

  • Young KR (1993) Tropical timberlines: changes in forest structure and regeneration between two Peruvian timberline margins. Arc Alp Res 25:167–174

    Article  Google Scholar 

  • Young KR (1994) Roads and the environmental degradation of tropical montane forests. Conserv Biol 8:972–976

    Article  Google Scholar 

Download references

Acknowledgments

We thank the NGO ECOAN for the collaboration in the field work. A special thanks goes to the persistent field assistant Louella Puelles Linares. We also thank Alfredo Tupayachi Herrera for his guidance and help in the field and Carlos Gonzales Inca for the study area map. We are also grateful to INRENA—Machupicchu for a working permit in the protected area of Machupicchu. The study was funded by Jenny and Antti Wihuri Foundation and Turku University Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna M. Toivonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toivonen, J.M., Kessler, M., Ruokolainen, K. et al. Accessibility predicts structural variation of Andean Polylepis forests. Biodivers Conserv 20, 1789–1802 (2011). https://doi.org/10.1007/s10531-011-0061-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0061-9

Keywords

Navigation