Skip to main content
Log in

Trophodynamics and functional feeding groups of North Sea fauna: a combined stable isotope and fatty acid approach

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The trophodynamics of pelagic and benthic animals of the North Sea, North Atlantic shelf, were assessed using stable isotope analysis (SIA) of natural abundance carbon and nitrogen isotopes, lipid fingerprinting and compound-specific SIA (CSIA) of phospholipid-derived fatty acids (PLFAs). Zooplankton (z), epi- and supra-benthic macrofauna were collected in the Southern Bight, at the Oyster Grounds and at North Dogger, 111 km north of the Dogger Bank. The study included 22 taxonomic groups with particular reference to Mollusca (Bivalvia and Gastropoda) and Crustacea. Primary consumers (Bivalvia) were overall most 15N enriched in the southern North Sea (6.1‰) and more depleted in the Oyster Grounds (5.5‰) and at North Dogger (2.8‰) demonstrating differences in isotopic baselines for bivalve fauna between the study sites. Higher trophic levels also followed this trend. Over an annual cycle, consumers tended to exhibit 15N depletion during spring followed by 15N enriched signatures in autumn and winter. The observed seasonal changes of δ 15N were more pronounced for suspension feeders and deposit feeders (dfs) than for filter feeders (ffs). The position of animals in plots of δ 13C and δ 15N largely concurred with the expected position according to literature-based functional feeding groups. PLFA fingerprints of groups such as z were distinct from benthic groups, e.g. benthic ffs and dfs, and predatory macrobenthos. δ 13CPLFA signatures indicated similarities in 13C moiety sources that constituted δ 13CPLFA. Although functional groups of pelagic zooplankton and (supra-) benthic animals represented phylogenetically distinct consumer groups, δ 13CPLFA demonstrated that both groups were supported by pelagic primary production and relied on the same macronutrients such as PLFAs. Errors related to the static categorization of small invertebrates into fixed trophic positions defined by phylogenetic groupings rather than by functional feeding groups, and information on seasonal trophodynamic variability, may have implications for the reliability of numerical marine ecosystem models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asmus R, Asmus H (1991) Mussel beds: limiting or promoting phytoplankton. J Exp Mar Biol Ecol 148:215–232

    Article  Google Scholar 

  • Attrill MJ, Wright J, Edwards M (2007) Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnol Oceanogr 52:480–485

    Article  Google Scholar 

  • Auel H, Harjes M, da Rocha R, Stübing D, Hagen W (2002) Lipid biomarkers indicate different ecological niches and trophic relationships of the arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biol 25:374–383

    Google Scholar 

  • Beare DJ, Burns F, Greig A, Jones EG, Peach K, Kienzle M, McKenzie E, Reid DG (2004) Long-term increases in prevalence of North Sea fishes having southern biogeographic affinities. Mar Ecol Prog Ser 284:169–276

    Article  Google Scholar 

  • Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton effect on cod recruitment in the North Sea. Nature 426:661–664

    Article  Google Scholar 

  • Bergé J-P, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers of biologically active compounds, and economical aspects. Adv Biochem Eng Biotechnol 96:49–125

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  Google Scholar 

  • Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95

    Article  Google Scholar 

  • Boschker HTS, de Brouwer JFC, Cappenberg TE (1999) The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–319

    Article  Google Scholar 

  • Boschker HTS, Kromkamp JC, Middelburg JJ (2005) Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol Oceanogr 50:70–80

    Article  Google Scholar 

  • Brett MT, Müller-Navarra DC, Persson J (2009) Crustacean zooplankton fatty acid composition. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, Dordrecht, pp 115–146

    Chapter  Google Scholar 

  • Brunel P, Bresner M, Messier D, Poirier L, Granger D, Weistein M (1978) Le traîneau Macer-GIROQ: appareil amélioré pour l’échantillonnage quantitatif de la petite faune nageuse au voisinage du fond. Int Rev Hydrobiol 63:815–829

    Article  Google Scholar 

  • Callaway R, Engelhard GH, Dann J, Cotter J, Rumohr H (2007) A century of North Sea epibenthos and trawling: comparison between 1902–1912, 1982–1985 and 2000. Mar Ecol Prog Ser 346:27–43

    Article  Google Scholar 

  • Canuel EA, Cloern JE, Ringelberg DB, Guckert JB, Rau GH (1995) Molecular and isotopic tracers used to examine sources organic matter and its incorporation into the food webs of San Francisco Bay. Limnol Oceanogr 40:67–81

    Article  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (δ 15N and δ 13C): the effect of diet isotopic values and application for diet reconstruction. J Appl Ecol 46:443–453

    Article  Google Scholar 

  • Christensen JT, Richardson K (2008) Stable isotope evidence of long-term changes in the North Sea food web structure. Mar Ecol Prog Ser 368:1–8

    Article  Google Scholar 

  • Chuecas L, Riley JP (1969) Component fatty acids of the total lipids of some marine phytoplankton. J Mar Biol Assoc UK 49:97–116

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E Ltd., Plymouth

    Google Scholar 

  • Cripps GC, Atkinson A (2000) Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Can J Fish Aquat Sci 57:31–37

    Article  Google Scholar 

  • Dalsgaard J, St. John M, Kattner G, Müller-Navarra DC, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  Google Scholar 

  • Darnaude AM, Salen-Picard C, Harmelin-Vivien ML (2004) Depth variation in terrestrial particulate organic matter exploitation by marine coastal benthic communities off the Rhone river delta (NW Mediterranean). Mar Ecol Prog Ser 275:47–57

    Article  Google Scholar 

  • Das K, Lepoint G, Leroy Y, Bouquegneau JM (2003) Marine mammals from the southern North Sea: feeding ecology data from δ 13C and δ 15N measurements. Mar Ecol Prog Ser 263:287–298

    Article  Google Scholar 

  • de Laender F, van Oevelen D, Soetaert K, Middelburg JJ (2010) Carbon transfer in a herbivore- and a microbial loop-dominated pelagic food web in the southern Barents Sea during spring and summer. Mar Ecol Prog Ser 398:93–107

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  Google Scholar 

  • Ehrenbaum E (1936) Naturgeschichte und wirtschaftliche Bedeutung der Seefische Nordeuropas, E. Schweizerbart’sche Verlagsbuchhandlung (Erwin Nägele) GmbH, Stuttgart

  • Falk-Petersen S, Hagen W, Kattner G, Clarke A, Sargent JR (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57:178–191

    Article  Google Scholar 

  • Fanelli E, Cartes JE, Badalamenti F, Rumolo P, Sprovieri M (2009a) Trophodynamics of suprabenthic fauna on coastal muddy bottoms of the southern Tyrrhenian Sea (western Mediterranean). J Sea Res 61:174–187

    Article  Google Scholar 

  • Fanelli E, Cartes JE, Rumolo P, Sprovieri M (2009b) Food-web structure and trophodynamics of mesopelagic-suprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen. Deep Sea Res I 56:1504–1520

    Article  Google Scholar 

  • Fanelli E, Cartes JE, Badalamenti F, D’Anna G, Pipitone C, Azzuro E, Rumollo P, Sprovieri M (2011) Meso-scale variability of coastal suprabenthic communities in the southern Tyrrhenian Sea (western Mediterranean). Estuar Coast Shelf Sci 91:351–360

    Article  Google Scholar 

  • Gentsch E, Kreibich T, Hagen W, Niehoff B (2009) Dietary shifts in the copepod Temora longicornis during spring: evidence from stable isotope signatures, fatty acid biomarkers and feeding experiments. J Plankton Res 31:45–60

    Article  Google Scholar 

  • Graeve M, Kattner G, Hagen W (1994) Diet-induced changes in the fatty acid composition of arctic herbivorous copepods: experimental evidence of trophic markers. J Exp Mar Biol Ecol 182:97–110

    Article  Google Scholar 

  • Graeve M, Kattner G, Piepenburg D (1997) Lipids in arctic benthos: Does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol 18:53–61

    Article  Google Scholar 

  • Graf G (1989) Benthic–pelagic coupling in a deep-sea benthic community. Nature 341:437–439

    Article  Google Scholar 

  • Hagen W, Auel H (2001) Seasonal adaptations and the role of lipids in the oceanic zooplankton. Zoology 104:312–326

    Article  Google Scholar 

  • Hamerlynck O, Cattrijsse A (1994) The food of Pomatoschistus minutus (Pisces, Gobiidae) in Belgian coastal waters, and a comparison with the food of its potential competitor P. lozanoi. J Fish Biol 44:753–771

    Google Scholar 

  • Harwood AJP, Dennis PF, Marca AD, Pilling GM, Millner RS (2008) The oxygen isotope composition of water masses within the North Sea. Estuar Coast Shelf Sci 78:353–359

    Article  Google Scholar 

  • Hoch MP, Fogel ML, Kirchman DL (1992) Isotope fractionation associated with ammonium uptake by a marine bacterium. Limnol Oceanogr 37:1447–1459

    Article  Google Scholar 

  • Hostens K, Mees L (1999) The mysid-feeding guild of demersal fishes in the brackish zone of the Westerschelde estuary. J Fish Biol 55:704–719

    Google Scholar 

  • Iverson SJ (2009) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, Dordrecht, pp 281–307

    Chapter  Google Scholar 

  • Iverson SJ, Field C, Bowen WD, Blanchard W (2004) Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol Monogr 74:211–235

    Article  Google Scholar 

  • Jackson DA (1993) Multivariate analysis of benthic invertebrate communities: the implication of choosing particular data standardizations, measures of association, and ordination methods. Hydrobiologia 268:9–26

    Article  Google Scholar 

  • Jennings S, Warr KJ (2003) Environmental correlates of large-scale spatial variation in the δ 15N of marine animals. Mar Biol 142:1131–1140

    Google Scholar 

  • Jennings S, Pinnegar JK, Polunin NVC, Boon TW (2001) Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. J Anim Ecol 70:934–944

    Article  Google Scholar 

  • Jennings S, Pinnegar JK, Polunin NVC, Warr KJ (2002) Linking size-based and trophic analysis of benthic community structure. Mar Ecol Prog Ser 226:77–85

    Article  Google Scholar 

  • Käkela A, Crane J, Votier S, Furness RW, Käkela R (2006) Fatty acid signatures as indicators of diet in great skuas Stercocarius skua, Shetland. Mar Ecol Prog Ser 319:297–310

    Article  Google Scholar 

  • Kates M, Volcani BE (1966) Lipid components of diatoms. Biochim Biophys Acta 116:264–278

    Article  Google Scholar 

  • Kirby RR, Beaugrand G, Lindley JA, Richardson AJ, Edwards M, Reid PC (2007) Climate effects and benthic–pelagic coupling in the North Sea. Mar Ecol Prog Ser 330:31–38

    Article  Google Scholar 

  • Kürten B (2010) An end-to-end study of North Sea food webs. PhD Thesis, University of Newcastle upon Tyne

  • Kürten B, Painting SJ, Struck U, Polunin NVC, Middelburg JJ (2011) Tracking seasonal changes in North Sea zooplankton trophic dynamics using stable isotopes. Biogeochemistry. doi:10.1007/s10533-011-9630-y

    Google Scholar 

  • Laevastu T (1963) Surface water types of the North Sea and their characteristics. Serial Atlas Mar Environ Folio 4:1–5

    Google Scholar 

  • Lebour MV (1922) The food of plankton organisms. J Mar Biol Assoc UK 12:644–677

    Article  Google Scholar 

  • Lee RF, Nevenzel JC, Paffenhöfer GA (1971) Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Mar Biol 9:99–108

    Article  Google Scholar 

  • Lindley JA, Batten SD (2002) Long-term variability in the diversity of North Sea zooplankton. J Mar Biol Assoc UK 83:31–40

    Google Scholar 

  • Logan JM, Lutcavage ME (2010) Reply to Hussey et al.: the requirement for accurate diet-tissue discrimination factors for interpreting stable isotopes in sharks. Hydrobiologia 654:7–12

    Article  Google Scholar 

  • MacAvoy SE, Arneson LS, Basset E (2006) Correlation of metabolism with tissue carbon and nitrogen turnover rate in small mammals. Oecologia 150:190–201

    Article  Google Scholar 

  • Madurell T, Fanelli E, Cartes JE (2008) Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Balearic Islands (western Mediterranean). J Mar Syst 71:336–345

    Article  Google Scholar 

  • Mariotti A, Lancelot C, Billen G (1984) Natural isotopic composition of nitrogen as a tracer of origin for suspended organic matter in the Scheldt estuary. Geochim Cosmochim Acta 48:549–555

    Article  Google Scholar 

  • McQuinn IH (2009) Pelagic fish outburst or suprabenthic habitat occupation: legacy of the Atlantic cod (Gadus morhua) collapse in eastern Canada. Can J Fish Aquat Sci 66:2256–2262

    Article  Google Scholar 

  • Mees J, Jones MB (1997) The hyperbenthos. Oceanogr Mar Biol Annu Rev 35:221–255

    Google Scholar 

  • Michener RH, Kaufman L (2007) Stable isotope ratios as tracers in marine food webs: an update. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, London, pp 238–282

    Chapter  Google Scholar 

  • Michie MG (1982) Use of the Bray–Curtis similarity measure in cluster analysis of foraminiferal data. Math Geol 14:661–667

    Article  Google Scholar 

  • Middelburg JJ, Herman PMJ (2007) Organic matter processing in tidal estuaries. Mar Chem 106:127–147

    Article  Google Scholar 

  • Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde estuary. Mar Chem 60:217–225

    Article  Google Scholar 

  • Mill AC, Sweeting CJ, Barnes C, Al-Habsi SH, MacNeil MA (2008) Mass spectrometer bias in stable isotope ecology. Limnol Oceanogr Methods 6:34–39

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ 15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  Google Scholar 

  • Mintenbeck K, Brey T, Jacob U, Knust R, Struck U (2008) How to account for the lipid effect on carbon stable-isotope ratio (δ 13C): sample treatment effects. J Fish Biol 72:815–830

    Article  Google Scholar 

  • Nedwell DB, Dong LF, Sage A, Underwood GJC (2002) Variations of the nutrients loads to the mainland U.K. estuaries: correlation with catchment areas, urbanization and coastal eutrophication. Estuar Coast Shelf Sci 54:951–970

    Article  Google Scholar 

  • Newell RC (1984) The biological role of detritus in the marine environment. In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems—theory and practice. Plenum Press, New York, pp 317–343

    Chapter  Google Scholar 

  • Ntiba MJ, Harding D (1993) The food and the feeding of the long rough dab, Hippoglossoides platessoides (Fabricius 1780) in the North Sea. J Sea Res 31:189–199

    Article  Google Scholar 

  • O’Reilly CM, Hecky RE, Cohen AS, Plisnier P-D (2002) Interpreting stable isotopes in food webs: recognizing the role of time averaging at different trophic levels. Limnol Oceanogr 47:306–309

    Article  Google Scholar 

  • Otto L, Zimmermann JTF, Furnes GK, Mork MSR, Becker G (1990) Review of the physical oceanography of the North Sea. J Sea Res 26:161–238

    Article  Google Scholar 

  • Pearce KF, Frid CLJ (1999) Coincident changes in four components of the North Sea ecosystem. J Mar Biol Assoc UK 79:183–185

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269

    Article  Google Scholar 

  • Pinnegar JK, Jennings GM, O’Brien CM, Polunin NVC (2002) Long-term changes in the trophic level of the Celtic Sea fish community and fish market price distribution. J Appl Ecol 39:377–390

    Article  Google Scholar 

  • Pitt KA, Clement A-L, Connolly RM, Thibault-Botha D (2008) Predation by jellyfish on large and emergent zooplankton: implications for benthic–pelagic coupling. Estuar Coast Shelf Sci 76:827–833

    Article  Google Scholar 

  • Polunin NVC, Morales-Nin B, Pawsey WE, Cartes JE, Pinnegar JK, Moranta J (2001) Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar Ecol Prog Ser 220:13–23

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Prins TC, Smaal AC (1990) Benthic–pelagic coupling: the release of inorganic nutrients by an intertidal bed of Mytilus edulis. Trophic relationships in the marine environment proc. 24th Europ. mar. biol. symp., pp 89–103

  • Raffaelli D, Bell E, Weithoff G, Matsumoto A, Cruz-Motta JJ, Kershaw P, Parker R, Parry D, Malcom J (2003) The ups and downs of benthic ecology: considerations of scale, heterogeneity and surveillance for benthic–pelagic coupling. J Exp Mar Biol Ecol 285–286:191–203

    Google Scholar 

  • Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295

    Article  Google Scholar 

  • Rolff C (2000) Seasonal variation in δ 13C and δ 15N of size fractionated plankton at a coastal station in the northern Baltic proper. Mar Ecol Prog Ser 203:7–65

    Article  Google Scholar 

  • Shumway SE, Cucci TL, Newell RC, Yentsch CM (1985) Particle selection, ingestion, and absorption in filter-feeding bivalves. J Exp Mar Biol Ecol 91:77–92

    Article  Google Scholar 

  • Sorbe JC (1983) Description d’un traîneau destiné à l’échantillonnage quantitatif étagé de la faune suprabenthique néritique. Ann Inst Océanogr 59:117–126

    Google Scholar 

  • St. John M, Lund T (1996) Lipid biomarkers: linking the utilization of frontal plankton biomass to enhanced conditions of juvenile North Sea cod. Mar Ecol Prog Ser 131:75–85

    Article  Google Scholar 

  • Stübing D, Hagen W (2003) Fatty acid biomarker ratios—suitable trophic indicators in Antarctic euphausiids? Polar Biol 26:774–782

    Article  Google Scholar 

  • Sweeting CJ, Jennings S, Polunin NVC (2005) Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory. Funct Ecol 19:777–784

    Article  Google Scholar 

  • Tillin HM, Hiddink JG, Jennings S, Kaiser MJ (2006) Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Mar Ecol Prog Ser 318:31–45

    Article  Google Scholar 

  • Vallet C, Dauvin J-C (2001) Biomass changes and bentho-pelagic transfers throughout the Benthic Boundary Layer in the English Channel. J Plankton Res 23:903–922

    Article  Google Scholar 

  • van Beusekom JEE, Diel-Christiansen S (2009) Global change and the biogeochemistry of the North Sea: the possible role of phytoplankton and phytoplankton grazing. Int J Earth Sci 98:259–280

    Google Scholar 

  • van Leeuwen SM, van der Molen J, Ruardij P, Fernand L, Jickells T (2012) Modelling the contribution of deep chlorophyll maxima to annual primary production in the North Sea. Biogeochemistry. doi:10.1007/s10533-012-9704-5

  • Van den Meersche K, van Rijswijk P, Soetaert K, Middelburg JJ (2009) Autochthonous and allochthonous contributions to mesozooplankton diet in a tidal river and estuary: integrating carbon and isotope fatty acid constraints. Limnol Oceanogr 54:62–74

    Article  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ 15N enrichment: a meta-analysis. Oecologia 136:169–182

    Article  Google Scholar 

  • Viso A-C, Marty J-C (1993) Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533

    Article  Google Scholar 

  • Voss M, Struck U (1997) Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder river (Baltic sea). Mar Chem 59:35–49

    Article  Google Scholar 

  • Weston K, Fernand L, Mills DK, Delahunty R, Brown J (2005) Primary production in the deep chlorophyll maximum of the central North Sea. J Plankton Res 27:909–922

    Article  Google Scholar 

  • Williams R, Conway DVP, Hunt HG (1994) The role of copepods in the planktonic ecosystem of mixed and stratified waters of the European shelf seas. Hydrobiologia 292/293:521–530

    Article  Google Scholar 

  • Winter JE (1969) Über den Einfluß der Nahrungskonzentration und anderer Faktoren auf Filtrierleistung und Nahrungsausnutzung der Muscheln Arctica islandica und Modiolus modiolus. Mar Biol 4:87–135

    Article  Google Scholar 

  • Witbaard R (1997) Tree of the sea. PhD thesis, Rijksuniversiteit Groningen, 157 pp

  • Witbaard R, Jansma E, Klaassen US (2003) Copepods link quahog growth to climate. J Sea Res 50:77–83

    Article  Google Scholar 

Download references

Acknowledgments

This is a contribution to the EURopean network of excellence for OCean Ecosystems ANalysiS (EUR-OCEANS) funded by the European Commission. The field work and data interpretations were partially funded by the Department for Environment, Food and Rural Affairs (DEFRA, UK, contract ME3205). The authors thank master and crew of RV CEFAS Endeavour, the cruise leaders and several cruise participants for their support. We are thankful to M. Houtekamer, P. van Rijswijk, P. van Breugel and A. Knuijt at the Netherlands Institute of Ecology (NIOO, NL) for analytical support. We thank J. Newton and R. McGill at the Scottish Universities Environmental Research Centre (SUERC, Scottish Life Sciences Mass Spectrometry Facility, UK) for SIA and training permitted through a SUERC grant. We also thank Jon Barry and Dave Maxwell (both of Cefas) for their inputs on Fig. 4, and two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Kürten.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kürten, B., Frutos, I., Struck, U. et al. Trophodynamics and functional feeding groups of North Sea fauna: a combined stable isotope and fatty acid approach. Biogeochemistry 113, 189–212 (2013). https://doi.org/10.1007/s10533-012-9701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9701-8

Keywords

Navigation