Skip to main content

Advertisement

Log in

Ultrahigh-resolution FT-ICR mass spectrometry for molecular characterisation of pressurised hot water-extractable organic matter in soils

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Dissolved organic matter in soil is a highly reactive pool of organic matter and is of great importance for biogeochemical cycles in soil. A better understanding of its dynamics relies on its molecular characterisation. Here, the molecular composition of water-extracted organic matter at elevated pressure and temperature (PH-WEOM) obtained from 120 Burgundy soils was investigated using high-field Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR MS). Unsupervised multivariate statistical analysis (UMSA) was used to retrieve classes of samples with specific molecular characteristics. Accordingly, van Krevelen diagram, Kendrick mass defect (KMD), as well as aromaticity index (AI) and aromaticity equivalent (Xc), were applied to present a pool of ubiquitous molecular formulas and to evaluate the PH-WEOM molecular heterogeneity in the sample set. Based on UMSA, the PH-WEOM from forest soils revealed a clearly distinct molecular composition, with major contributions from lignin- and tannin-like compounds, and with its aromaticity related to soil characteristics, especially the soil pH. No clear evidence of land-cover influence on the PH-WEOM molecular composition was found for cropland and grassland soils, but the role of pH was also identified for these samples, and agrees with molecular patterns attributed to microbial activity, with the presence of compounds with high H/C ratio. A group of samples from cropland soils developed on residual formations is characterised by a very specific molecular composition, rich in aliphatic organosulfur-like compounds, highlighting the importance of specific soil processes in the molecular composition of PH-WEOM. This work demonstrates the potential of FT-ICR MS to resolve the high chemical complexity of PH-WEOM in soils and the intricate influences of both biotic and abiotic environmental factors on the molecular composition of PH-WEOM in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Banaitis MR, Waldrip-Dail H, Diehl MS, Holmes BC, Hunt JF, Lynch RP, Ohno T (2006) Investigating sorption-driven dissolved organic matter fractionation by multidimensional fluorescence spectroscopy and PARAFAC. J Colloid Interface Sci 304:271–276. doi:10.1016/j.jcis.2006.07.035

    Article  Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113:357–380. doi:10.1016/S0016-7061(02)00370-1

    Article  Google Scholar 

  • Chantigny MH, Harrison-kirk T, Curtin D, Beare MH (2014) Temperature and duration of extraction affect the biochemical composition of soil water-extractable organic matter. Soil Biol Biochem 75:161–166. doi:10.1016/j.soilbio.2014.04.011

    Article  Google Scholar 

  • Chemidlin Prévost-Bouré N, Dequiedt S, Thioulouse J et al (2014) Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale. PloS One 9:e111667. doi:10.1371/journal.pone.0111667

    Article  Google Scholar 

  • Chin Y-P, Aiken GR, O’Loughlin E (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28:1853–1858. doi:10.1021/es00060a015

    Article  Google Scholar 

  • De Troyer I, Amery F, van Moorleghem C, Smolders E, Merckx R (2011) Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: a batch incubation study. Soil Biol Biochem 43:513–519. doi:10.1016/j.soilbio.2010.11.016

    Article  Google Scholar 

  • Fitzgerald JW, Andrew TL, Swank WT (1984) Availability of carbon-bonded sulfur for mineralization in forest soils. Can J For Res 14:839–843

    Article  Google Scholar 

  • Gangloff S, Stille P, Pierret M-CC, Weber T, Chabaux F (2014) Characterization and evolution of dissolved organic matter in acidic forest soil and its impact on the mobility of major and trace elements (case of the Strengbach watershed). Geochim Cosmochim Acta 130:21–41. doi:10.1016/j.gca.2013.12.033

    Article  Google Scholar 

  • Ghani A, Dexter M, Perrott K (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243. doi:10.1016/S0038-0717(03)00186-X

    Article  Google Scholar 

  • Gonsior M, Zwartjes M, Cooper WJ, Song W, Ishida KP, Tseng LY, Jeung MK, Rosso D, Hertkorn N, Schmitt-Kopplin P (2011) Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry. Water Res 45:2943–2953. doi:10.1016/j.watres.2011.03.016

    Article  Google Scholar 

  • Guigue J, Mathieu O, Lévêque J, Mounier S, Laffont R, Maron P-A, Navarro N, Chateau-Smith C, Amiotte-Suchet P, Lucas Y (2014) A comparison of extraction procedures for water-extractable organic matter in soils. Eur J Soil Sci 65:520–530. doi:10.1111/ejss.12156

    Article  Google Scholar 

  • Guigue J, Lévêque J, Mathieu O, Schmitt-Kopplin P, Lucio M, Arrouays D, Jolivet C, Dequiedt S, Chemidlin Prévost-Bouré N, Ranjard L (2015) Water-extractable organic matter linked to soil physico-chemistry and microbiology at the regional scale. Soil Biol Biochem 84:158–167. doi:10.1016/j.soilbio.2015.02.016

    Article  Google Scholar 

  • Hagedorn F, Saurer M, Blaser P (2004) A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils. Eur J Soil Sci 55:91–100. doi:10.1046/j.1365-2389.2003.00578.x

    Article  Google Scholar 

  • Hertkorn N, Ruecker C, Meringer M, Gugisch R, Frommberger M, Perdue EM, Witt M, Schmitt-Kopplin P (2007) High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems. Anal Bioanal Chem 389:1311–1327. doi:10.1007/s00216-007-1577-4

    Article  Google Scholar 

  • Hertkorn N, Harir M, Schmitt-Kopplin P (2015) Nontarget analysis of Murchison soluble organic matter by high-field NMR spectroscopy and FTICR mass spectrometry. Magn Reson Chem 53:754–768. doi:10.1002/mrc.4249

    Article  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Report No 103, FAO, Rome

  • Jolivet C, Boulonne L, Ratié C (2006) Manuel du réseau de mesures de la qualité des sols. (Handbook of soil quality monitoring network). http://www.gissol.fr/programme/rmqs/RMQS_manuel_31032006.pdf (in French)

  • Kaiser K, Kalbitz K (2012) Cycling downwards—dissolved organic matter in soils. Soil Biol Biochem 52:29–32. doi:10.1016/j.soilbio.2012.04.002

    Article  Google Scholar 

  • Kaiser K, Guggenberger G, Zech W (2001) Isotopic fractionation of dissolved organic carbon in shallow forest soils as affected by sorption. Eur J Soil Sci 52:585–597. doi:10.1046/j.1365-2389.2001.00407.x

    Article  Google Scholar 

  • Kaiser K, Guggenberger G, Haumaier L (2004) Changes in dissolved lignin-derived phenols, neutral sugars, uronic acids, and amino sugars with depth in forested Haplic Arenosols and Rendzic Leptosols. Biogeochemistry 70:135–151. doi:10.1023/B:BIOG.0000049340.77963.18

    Article  Google Scholar 

  • Kalbitz K, Kaiser K (2008) ontribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sci 171:52–60. doi:10.1002/jpln.200700043

    Article  Google Scholar 

  • Kendrick E (1963) A mass scale based on CH2 = 14.00000 for high resolution mass spectrometry of organic compounds. Anal Chem 35:2146–2154. doi:10.1021/ac60206a048

    Article  Google Scholar 

  • Kim S, Kramer RW, Hatcher PG (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem 75:5336–5344. doi:10.1021/ac034415p

    Article  Google Scholar 

  • Knicker H, Hatcher PG, González-Vila FJ (2002) Formation of heteroaromatic nitrogen after prolonged humification of vascular plant remains as revealed by nuclear magnetic resonance spectroscopy. J Environ Qual 31:444–449. doi:10.2134/jeq2002.4440

    Article  Google Scholar 

  • Koch BP, Dittmar T (2006) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun Mass Spectrom 20:926–932. doi:10.1002/rcm.2386

    Article  Google Scholar 

  • Kujawinski EB, Freitas MA, Zang X, Hatcher PG, Green-Church KB, Jones RB (2002) The application of electrospray ionization mass spectrometry (ESI MS) to the structural characterization of natural organic matter. Org Geochem 33:171–180. doi:10.1016/S0146-6380(01)00149-8

    Article  Google Scholar 

  • Kujawinski EB, Longnecker K, Blough NV, Del Vecchio R, Finlay L, Kitner JB, Giovannoni SJ (2009) Identification of possible source markers in marine dissolved organic matter using ultrahigh resolution mass spectrometry. Geochim Cosmochim Acta 73:4384–4399. doi:10.1016/j.gca.2009.04.033

    Article  Google Scholar 

  • Kunenkov EV, Kononikhin AS, Perminova IV, Hertkorn N, Gaspar A, Schmitt-Kopplin P, Popov IA, Garmash AV, Nikolaev EN (2009) Total mass difference statistics algorithm: a new approach to identification of high-mass building blocks in electrospray ionization Fourier transform ion cyclotron mass spectrometry data of natural organic matter. Anal Chem 81:10106–10115. doi:10.1021/ac901476u

    Article  Google Scholar 

  • Lacarce E, Saby NPA, Martin MP, Marchant BP, Boulonne L, Meersmans J, Jolivet C, Bispo A, Arrouays D (2012) Mapping soil Pb stocks and availability in mainland France combining regression trees with robust geostatistics. Geoderma 170:359–368. doi:10.1016/j.geoderma.2011.11.014

    Article  Google Scholar 

  • Lewis DB, Kaye JP (2012) Inorganic nitrogen immobilization in live and sterile soil of old-growth conifer and hardwood forests: implications for ecosystem nitrogen retention. Biogeochemistry 111:169–186. doi:10.1007/s10533-011-9627-6

    Article  Google Scholar 

  • Marianna L, Fekete A, Frommberger M, Schmitt-Kopplin P (2011) Metabolomics: high-resolution tools offer to follow bacterial growth on a molecular level. In: de Bruijn FJ (ed) Handbook of molecular microbial ecology I: metagenomics and complementary approaches. Wiley, Hoboken, NJ

    Google Scholar 

  • Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–235. doi:10.2134/jeq2002.4440

    Article  Google Scholar 

  • Martin MP, Wattenbach M, Smith P, Meersmans J, Jolivet C, Boulonne L, Arrouays D (2011) Spatial distribution of soil organic carbon stocks in France. Biogeosciences 8:1053–1065. doi:10.5194/bg-8-1053-2011

    Article  Google Scholar 

  • McDowell WH, Zsolnay Á, Aitkenhead-Peterson JA, Gregorich EG, Jones DL, Jödemann D, Kalbitz K, Marschner B, Schwesig D (2006) A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources. Soil Biol Biochem 38:1933–1942. doi:10.1016/j.soilbio.2005.12.018

    Article  Google Scholar 

  • Mosher JJ, Klein GC, Marshall AG, Findlay RH (2010) Influence of bedrock geology on dissolved organic matter quality in stream water. Org Geochem 41:1177–1188. doi:10.1016/j.orggeochem.2010.08.004

    Article  Google Scholar 

  • Nkhili E, Guyot G, Vassal N, Richard C (2012) Extractability of water-soluble soil organic matter as monitored by spectroscopic and chromatographic analyses. Environ Sci Pollut Res Int 19:2400–2407. doi:10.1007/s11356-012-0752-0

    Article  Google Scholar 

  • Ohno T, Parr TB, Gruselle MCI, Fernandez IJ, Sleighter RL, Hatcher PG (2014) Molecular composition and biodegradability of soil organic matter: a case study comparing two New England forest types. Environ Sci Technol 48:7729–7736. doi:10.1021/es405570c

    Article  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832. doi:10.1097/00010694-200111000-00007

    Article  Google Scholar 

  • Ranjard L, Dequiedt S, Chemidlin Prévost-Bouré N, Thioulouse J, Saby NPA, Lelievre M, Maron PA, Morin FER, Bispo A, Jolivet C, Arrouays D, Lemanceau P (2013) Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat Commun 4:1434. doi:10.1038/ncomms2431

    Article  Google Scholar 

  • Redon P-O, Jolivet C, Saby NPA, Abdelouas A, Thiry Y (2012) Occurrence of natural organic chlorine in soils for different land uses. Biogeochemistry 114:413–419. doi:10.1007/s10533-012-9771-7

    Article  Google Scholar 

  • Reemtsma T, These A (2003) On-line coupling of size exclusion chromatography with electrospray ionization-tandem mass spectrometry for the analysis of aquatic fulvic and humic acids. Anal Chem 75:1500–1507. doi:10.1021/ac0261294

    Article  Google Scholar 

  • Rennert T, Gockel KF, Mansfeldt T (2007) Extraction of water-soluble organic matter from mineral horizons of forest soils. J Plant Nutr Soil Sci 170:514–521. doi:10.1002/jpln.200625099

    Article  Google Scholar 

  • Roth V-N, Dittmar T, Gaupp R, Gleixner G (2013) Latitude and pH driven trends in the molecular composition of DOM across a north south transect along the Yenisei River. Geochim Cosmochim Acta 123:93–105. doi:10.1016/j.gca.2013.09.002

    Article  Google Scholar 

  • Roth V-N, Dittmar T, Gaupp R, Gleixner G (2014) Ecosystem-specific composition of dissolved organic matter. Vadose Zo J 13:1–10. doi:10.2136/vzj2013.09.0162

    Google Scholar 

  • Roth V-N, Dittmar T, Gaupp R, Gleixner G (2015) The molecular composition of dissolved organic matter in forest soils as a function of pH and temperature. PloS One 10:e0119188. doi:10.1371/journal.pone.0119188

    Article  Google Scholar 

  • Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010a) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci U S A 107:2763–2768. doi:10.1073/pnas.0912157107

    Article  Google Scholar 

  • Schmitt-Kopplin P, Gelencsér A, Dabek-Zlotorzynska E, Kiss G, Hertkorn N, Harir M, Hong Y, Gebefügi I (2010b) Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents. Anal Chem 82:8017–8026. doi:10.1021/ac101444r

    Article  Google Scholar 

  • Schmitt-Kopplin P, Harir M, Tziotis D, Gabelica Z, Hertkorn N (2012) Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry for the analysis of natural organic matter from various environmental systems. In: Lebedev A (ed) Comprehensive environmental mass spectrometry. ILM Publications, St Albans, pp 443–459

  • Schmitt-Kopplin P, Harir M, Kanawati B, Gougeon RD, Moritz F, Hertkorn N, Clary S, Gebefügi I, Gabelica Z (2014) Analysis of extraterrestrial organic matter in Murchison meteorite. In: Kolb V (ed) Astrobiology: an evolutionary approach. CRC Press, Florida, pp 63–80

  • Schwesig D, Göttlein A, Haumaier L, Blasek R, Ilgen G (1999) Soil organic matter extraction using water at high temperature and elevated pressure (ASE) as compared to conventional methods. Int J Environ Anal Chem 73:253–268. doi:10.1080/03067319908032668

    Article  Google Scholar 

  • Seo J, Gordish-Dressman H, Hoffman EP (2006) An interactive power analysis tool for microarray hypothesis testing and generation. Bioinformatics 22:808–814. doi:10.1093/bioinformatics/btk052

    Article  Google Scholar 

  • Simpson AJ, Kingery WL, Hayes MH, Spraul M, Humpfer E, Dvortsak P, Kerssebaum R, Godejohann M, Hofmann M (2002) Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften 89:84–88. doi:10.1007/s00114-001-0293-8

    Article  Google Scholar 

  • Sleighter RL, Liu Z, Xue J, Hatcher PG (2010) Multivariate statistical approaches for the characterization of dissolved organic matter analyzed by ultrahigh resolution mass spectrometry. Environ Sci Technol 44:7576–7582. doi:10.1021/es1002204

    Article  Google Scholar 

  • Strickland TC, Fitzgerald JW (1984) Formation and mineralization of organic sulfur in forest soils. Biogeochemistry 95:79–95

    Article  Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015

    Article  Google Scholar 

  • Torres-Cañabate P, Davidson EA, Bulygina E, García-Ruiz R, Carreira JA (2008) Abiotic immobilization of nitrate in two soils of relic Abies pinsapo-fir forests under Mediterranean climate. Biogeochemistry 91:1–11. doi:10.1007/s10533-008-9255-y

    Article  Google Scholar 

  • Tseng LY, Gonsior M, Schmitt-Kopplin P, Cooper WJ, Pitt P, Rosso D (2013) Molecular characteristics and differences of effluent organic matter from parallel activated sludge and integrated fixed-film activated sludge (IFAS) processes. Environ Sci Technol 47:10277–10284. doi:10.1021/es4002482

    Google Scholar 

  • Van Krevelen DW (1950) Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29:269–284

    Google Scholar 

  • Van Wesemael B, Paustian K, Andrén O, Cerri CEP, Dodd M, Etchevers J, Goidts E, Grace P, Kätterer T, McConkey BG, Ogle S, Pan G, Siebner C (2011) How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils? Plant Soil 338:247–259. doi:10.1007/s11104-010-0567-z

    Article  Google Scholar 

  • Waggoner DC, Chen H, Willoughby AS, Hatcher PG (2015) Formation of black carbon-like and alicyclic aliphatic compounds by hydroxyl radical initiated degradation of lignin. Org Geochem 82:69–76. doi:10.1016/j.orggeochem.2015.02.007

    Article  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708. doi:10.1021/es030360x

    Article  Google Scholar 

  • Wiesmeier M, Spörlein P, Geuß U, Hangen E, Haug S, Reischl A, Schilling B, Lützow M, Kögel-Knabner I (2012) Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob Chang Biol 18:2233–2245. doi:10.1111/j.1365-2486.2012.02699.x

    Article  Google Scholar 

  • Wu Z, Rodgers RP, Marshall AG (2004) Two- and three-dimensional van Krevelen diagrams: a graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance. Anal Chem 76:2511–2516. doi:10.1021/ac0355449

    Article  Google Scholar 

  • Yassine MM, Dabek-Zlotorzynska E, Harir M, Schmitt-Kopplin P (2012) Identification of weak and strong organic acids in atmospheric aerosols by capillary electrophoresis/mass spectrometry and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 84:6586–6594. doi:10.1021/ac300798g

    Article  Google Scholar 

  • Yassine MM, Harir M, Dabek-Zlotorzynska E, Schmitt-Kopplin P (2014) Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry : aromaticity equivalent approach. Rapid Commun Mass Spectrom 28:2445–2454. doi:10.1002/rcm.7038

    Article  Google Scholar 

  • Zhao M, Zhou J, Kalbitz K (2008) Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China. Eur J Soil Biol 44:158–165. doi:10.1016/j.ejsobi.2007.09.007

    Article  Google Scholar 

Download references

Acknowledgments

The RMQS soil-sampling and physico-chemical analyses were supported by a French Scientific Group of Interest on soils: the ‘GIS Sol’, involving the French Ministry for Ecology and Sustainable Development, the French Ministry of Agriculture, the French Agency for Energy and Environment (ADEME), the French Institute for Research and Development (IRD), the National Institute for Agronomic Research (INRA), and the National Institute of the Geographic and Forest Information (IGN). We thank Dominique Arrouays and Claudy Jolivet for the project coordination, all the soil surveyors and technical assistants involved in sampling the sites, and technical support from the French soil sample archive, which provided the collection of soils studied. This work, through the involvement of technical facilities of the GenoSol platform of the ANAEE-France infrastructure, received a grant from the French state through the National Agency for Research under the program ANR-11-INBS-0001 “Investments for the Future”, as well as a grant from the Regional Council of Burgundy. A travel grant from the doctoral school ES facilitated the collaborative work. Review comments and English editing of this paper by Carmela Chateau-Smith were also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julien Guigue or Philippe Schmitt-Kopplin.

Additional information

Responsible Editor: Marc G Kramer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1739 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guigue, J., Harir, M., Mathieu, O. et al. Ultrahigh-resolution FT-ICR mass spectrometry for molecular characterisation of pressurised hot water-extractable organic matter in soils. Biogeochemistry 128, 307–326 (2016). https://doi.org/10.1007/s10533-016-0209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0209-5

Keywords

Navigation