Skip to main content

Advertisement

Log in

Restoration effects on water table depths and CO2 fluxes from climatically marginal blanket bog

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

This study aimed to measure the effects of ecological restoration on blanket peat water table depths and CO2 fluxes. The flux of CO2 and water table depths were measured on eight sites for 5 years. Results suggest that sites with revegetation alongside slope stabilisation have the highest rates of photosynthesis and are the largest net (daylight hours) sinks of CO2. Bare sites are the largest net sources of CO2 and have the deepest water table depths. Sites with gully wall stabilisation are between 5 and 8 times more likely to be net CO2 sinks than the bare sites. Revegetation without gully flow blocking using plastic dams does not have a large effect on water table depths in and around the gullies investigated whereas a blocked gully has water table depths comparable to a naturally revegetating gully. A 10 cm lowering in water table depth decreases the probability of observing a net CO2 sink, on a given site, by up to 30 %. The most important conclusion of this research was that restoration interventions are effective at increasing the likelihood of net CO2 sink behaviour and raising water tables on degraded, climatically marginal blanket bog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitkenhead N, Wray DA (2002) British regional geology : the Pennines and adjacent areas. British Geological Survey, Natural Environment Research Council, Nottingham

    Google Scholar 

  • Allott T, Evans M, Lindsay J, Agnew C, Freer J, Jones A, Parnell M (2009) Water tables in Peak District blanket peatlands. Moors for the Future Partnership, Report 17

  • Anderson P, Buckler M, Walker J (2009) Moorland restoration: potential and progress. In: Bonn A, Allott T, Hubacek K, Stewart J (eds) Drivers of environmental change in uplands. Routledge, Abingdon, pp 432–447

    Google Scholar 

  • Bain C, Bonn A, Stoneman RE, Chapman SJ, Coupar A, Evans M, Geary B, Howat M, Joosten H, Keenleyside C, Lindsay RA, Labadz JC, Littlewood N, Lunt P, Miller C, Moxey A, Orr HG, Reed MS, Smith P, Swales V, Thompson DBA, van de Noort R, Wilson J, Worrall F (2011) Commission of Inquiry on UK Peatlands. In: IUCN UK Peatland Promgramme, Edinburgh

  • Bellamy PE, Stephen L, Maclean IS, Grant MC (2012) Response of blanket bog vegetation to drain-blocking. Appl Veg Sci 15(1):129–135

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci Bull 24(1):43–69

    Article  Google Scholar 

  • Bonn A, Allott TEH, Hubacek K, Stewart J (2009a) Drivers of environmental change in uplands. Routledge, Abingdon

    Google Scholar 

  • Bonn A, Rebane M, Reid C (2009b) Ecosystem services: a new rationale for conservation of upland environments. In: Bonn A, Allott T, Hubacek K, Stewart J (eds) Drivers of environmental change in uplands. Routledge, Abingdon

    Google Scholar 

  • Bower MM (1961) The distribution of erosion in blanket peat bogs in the pennines. T I Brit Geogr 29:17–30

    Google Scholar 

  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hajek M, Hajek T, Lacumin P, Kutnar L, Tahvanainen T, Toberman H (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. P Natl Acad Sci USA 103(51):19386–19389

    Article  Google Scholar 

  • Burt TP, Ferranti EJS (2012) Changing patterns of heavy rainfall in upland areas: a case study from northern England. Int J Climatol 32(4):518–532

    Article  Google Scholar 

  • Burt TP, Holden J (2010) Changing temperature and rainfall gradients in the British Uplands. Clim Res 45(1):57–70

    Article  Google Scholar 

  • Charman DJ (2002) Peatlands and environmental change. Wiley, Chichester

    Google Scholar 

  • Chen Y, McNamara NP, Dumont MG, Bodrossy L, Stralis-Pauese N, Murrell JC (2008) The impact of burning and Calluna removal on below-ground methanotroph diversity and activity in a peatland soil. Appl Soil Ecol 40(2):291–298

    Article  Google Scholar 

  • Clark JM, Ashley D, Wagner M, Chapman PJ, Lane SN, Evans CD, Heathwaite AL (2009) Increased temperature sensitivity of net DOC production from ombrotrophic peat due to water table draw-down. Global Change Biol 15(4):794–807

    Article  Google Scholar 

  • Clark JM, Billett MF, Coyle M, Croft S, Daniels S, Evans CD, Evans M, Freeman C, Gallego-Sala AV, Heinemeyer A, House JI, Monteith DT, Nayak D, Orr HG, Prentice IC, Rose R, Rowson J, Smith JU, Smith P, Tun YM, Vanguelova E, Wetterhall F, Worrall F (2010a) Model inter-comparison between statistical and dynamic model assessments of the long-term stability of blanket peat in Great Britain (1940–2099). Clim Res 45(1):U227–U281

    Article  Google Scholar 

  • Clark JM, Gallego-Sala AV, Allott TEH, Chapman SJ, Farewell T, Freeman C, House JI, Orr HG, Prentice IC, Smith P (2010b) Assessing the vulnerability of blanket peat to climate change using an ensemble of statistical bioclimatic envelope models. Clim Res 45(1):U131–U462

    Article  Google Scholar 

  • Clay GD, Dixon S, Evans MG, Rowson JG, Worrall F (2012) Carbon dioxide fluxes and DOC concentrations of eroding blanket peat gullies. Earth Surf Proc Land 37(5):562–571

    Article  Google Scholar 

  • Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S, Dubovik D, Liashchynskaya N, Michaelis D, Minke M, Skuratovich A, Joosten H (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674(1):67–89

    Article  Google Scholar 

  • Cris R, BUckmaster S, Bain C, Bonn A (2011) UK Peatland Restoration—Demonstrating Success. In: IUCN UK National Peatland Programme, Edinburgh

  • Crowe SE, Evans M, Allott TEH (2008) Geomorphological controls on the re-vegetation of erosion gullies in blanket peat: implications for bog restoration. Mires and Peat 3:1–14

    Google Scholar 

  • Dorrepaal E, Cornelissen JHC, Aerts R, Wallen B, Van Logtestijn RSP (2005) Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? J Ecol 93(4):817–828

    Article  Google Scholar 

  • Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460(7255):U616–U679

    Article  Google Scholar 

  • Edwards GA, Amirtharajah A (1985) Removing color caused by humic acids. J Am Water Works Ass 77(3):50–57

    Google Scholar 

  • Evans M, Lindsay J (2010a) High resolution quantification of gully erosion in upland peatlands at the landscape scale. Earth Surf Proc Land 35(8):876–886

    Article  Google Scholar 

  • Evans M, Lindsay J (2010b) Impact of gully erosion on carbon sequestration in blanket peatlands. Clim Res 45(1):31–41

    Article  Google Scholar 

  • Evans M, Allott T, Holden J, Flitcroft C, Bonn A (2005) Understanding gully blocking in deep peat. Moors for the Future, Castleton

  • Evans M, Warburton J, Yang J (2006a) Eroding blanket peat catchments: global and local implications of upland organic sediment budgets. Geomorphology 79(1–2):45–57

    Article  Google Scholar 

  • Evans M, Warburton J, Yang J (2006b) Eroding blanket peat catchments: global and local implications of upland organic sediment budgets. Geomorphology 79(1–2):45–57

    Article  Google Scholar 

  • Farrick KK, Price JS (2009) Ericaceous shrubs on abandoned block-cut peatlands: implications for soil water availability and Sphagnum restoration. Ecohydrology 2(4):530–540

    Article  Google Scholar 

  • Gallard H, von Gunten U (2002) Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Res 36(1):65–74

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands—role in the carbon-cycle and probable responses to climatic warming. Ecol Appl 1(2):182–195

    Article  Google Scholar 

  • Gorham E, Rochefort L (2003) Peatland restoration: a brief assessment with special reference to Sphagnum bogs. Wetl Ecol Manag 11(1–2):109–119

    Article  Google Scholar 

  • Heathwaite AL (1993) Disappearing peat regenerating peat—the impact of climate-change on British peatlands. Geogr J 159:203–208

    Article  Google Scholar 

  • Holden J, Wallage ZE, Lane SN, McDonald AT (2011) Water table dynamics in undisturbed, drained and restored blanket peat. J Hydrol 402(1–2):103–114

    Article  Google Scholar 

  • Hulme M, Hossell JE, Parry ML (1993) Future climate change and land use in the United Kingdom. Geogr J 159(2):131–147

    Article  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54(2):187–211

    Article  Google Scholar 

  • Janssens IA, Freibauer A, Schlamadinger B, Ceulemans R, Ciais P, Dolman AJ, Heimann M, Nabuurs GJ, Smith P, Valentini R, Schulze ED (2005) The carbon budget of terrestrial ecosystems at country-scale—a European case study. Biogeosciences 2(1):15–26

    Article  Google Scholar 

  • Jenkins G, Murphy J, Sexton S, Lowe J, Jones P, Kilsby C (2010) UK Climate Projections: Briefing Report (version 2). In: DEFRA, London

  • Joosten H (2009) The global peatland CO2 picture: Peatland status and drainage related emissions in all countries of the world In: Wetlands International, Ide

  • Joosten H, Tapio-Bistrom M-L, Tol S (2012) Peatlands—guidance for climate change mitigation by conservation, rehabilitation and sustainable use. Food and Agriculture Organisation of the United Nations and Wetlands International, Rome

    Google Scholar 

  • Ketcheson SJ, Price JS (2011) The Impact of peatland restoration on the site hydrology of an abandoned block-cut bog. Wetlands 31(6):1263–1274

    Article  Google Scholar 

  • Leppala M, Kukko-Oja K, Laine R, Tuittila ES (2008) Seasonal dynamics of CO2 exchange during primary succession of boreal mires as controlled by phenology of plants. Ecoscience 15(4):460–471

    Article  Google Scholar 

  • Leppala M, Laine AM, Sevakivi ML, Tuittila ES (2011) Differences in CO2 dynamics between successional mire plant communities during wet and dry summers. J Veg Sci 22(2):357–366

    Article  Google Scholar 

  • Lindsay JB (2005) The terrain analysis system: a tool for hydro-geomorphic applications. Hydrol Process 19(5):1123–1130

    Article  Google Scholar 

  • Lindsay RM (2010) Peatbogs and carbon: a critical synthesis to inform policy development in oceanic peat bog conservation and restoration in the context of climate change. In: University of East London, London

  • Littlewood N, Anderson P, Artz RRE, Bragg OM, Lunt P, Marrs RH (2010) Peatland biodiversity. In: IUCN UK Peatland Programme, Edinburgh

  • Marinier M, Glatzel S, Moore TR (2004) The role of cotton-grass (Eriophorum vaginatum) in the exchange of CO2 and CH4 at two restored peatlands, eastern Canada. Ecoscience 11(2):141–149

    Google Scholar 

  • Martikainen PJ, Nykanen H, Alm J, Silvola J (1995) Change in fluxes of carbon-dioxide, methane and nitrous-oxide due to forest drainage of mire sites of different trophy. Plant Soil 168:571–577

    Article  Google Scholar 

  • McNeil P, Waddington JM (2003) Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. J Appl Ecol 40(2):354–367

    Article  Google Scholar 

  • Met-Office (2013) Sheffield Historical Station Data. In: vol 02/07/2013. HMSO, London

  • Milne R, Brown TA (1997) Carbon in the vegetation and soils of Great Britain. J Environ Manage 49(4):413–433

    Article  Google Scholar 

  • Mitchell RJ, Rose RJ, Palmer SCF (2008) Restoration of Calluna vulgaris on grass-dominated moorlands: the importance of disturbance, grazing and seeding. Biol Conserv 141(8):2100–2111

    Article  Google Scholar 

  • Montanarella L, Jones RJA, Hiederer R (2006) The distribution of peatland in Europe. Mires and Peat 1(1):1–10

    Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vision Graph 28(3):323–344

    Article  Google Scholar 

  • Olejnik S, Algina J (2003) Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychol Methods 8(4):434–447

    Article  Google Scholar 

  • Orr HG, Wilby RL, Hedger MM, Brown I (2008) Climate change in the uplands: a UK perspective on safeguarding regulatory ecosystem services. Clim Res 37(1):77–98

    Article  Google Scholar 

  • Osborn TJ, Hulme M (2002) Evidence for trends in heavy rainfall events over the UK. Philos Trans Royal Soc Lond Ser A 360(1796):1313–1325

    Article  Google Scholar 

  • Paal T, Starast M, Noormets-Sanski M, Vool E, Tasa T, Karp K (2011) Influence of liming and fertilization on lowbush blueberry in harvested peat field condition. Sci Hortic 130(1):157–163

    Article  Google Scholar 

  • Philips H (2010) England’s Peatlands: Carbon storage and greenhouse gases. In: Natural England, Sheffield

  • Price J, Whitehead G (2001) Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21(1):32–40

    Article  Google Scholar 

  • Price J, Rochefort L, Quinty F (1998) Energy and moisture considerations on cutover peatlands: surface microtopography, mulch cover and Sphagnum regeneration. Ecol Eng 10(4):293–312

    Article  Google Scholar 

  • Rodwell JS (1991) British Plant Communities. Volume 2: Mires and Heaths. Cambridge University Press, Cambridge

  • Rowson JG, Gibson HS, Worrall F, Ostle N, Burt TP, Adamson JK (2010) The complete carbon budget of a drained peat catchment. Soil Use Manage 26(3):261–273

    Article  Google Scholar 

  • Shuttleworth EL, Evans M, Rothwell JJ, Hutchinson SM (2012) Impacts of erosion and restoration on POC flux and pollutant mobilisation in the peatlands of the Peak District National Park, UK. In: EGU. Vienna. p 12415

  • Sliva J, Pfadenhauer J (1999) Restoration of cut-over raised bogs in Southern Germany: a comparison of methods. Appl Veg Sci 2(1):137–148

    Article  Google Scholar 

  • Soini P, Riutta T, Yli-Petays M, Vasander H (2010) Comparison of vegetation and Co2 dynamics between a restored cut-away peatland and a pristine fen: evaluation of the restoration success. Restor Ecol 18(6):894–903

    Article  Google Scholar 

  • Strack M, Waddington JM, Rochefort L, Tuittila ES (2006) Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. J Geophys Res 111(G2):G02006

    Google Scholar 

  • Tallis JH (1985) Mass movement and erosion of a Southern Pennine blanket peat. J Ecol 73(1):283–315

    Article  Google Scholar 

  • Trexler JC, Travis J (1993) Nontraditional regression-analyses. Ecology 74(6):1629–1637

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10(23):11707–11735

    Article  Google Scholar 

  • Vasander H, Tuittila ES, Lode E, Lundin L, Ilomets M, Sallantaus T, Heikkilä R, Pitkänen ML, Laine J (2003) Status and restoration of peatlands in northern Europe. Wetl Ecol Manag 11(1–2):51–63

    Article  Google Scholar 

  • Waddington JM, Price JS (2000) Effect of peatland drainage, harvesting, and restoration on atmospheric water and carbon exchange. Phys Geogr 21(5):433–451

    Google Scholar 

  • Waddington JM, Warner KD (2001) Atmospheric CO2 sequestration in restored mined peatlands. Ecoscience 8(3):359–368

    Google Scholar 

  • Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Funct Ecol 23(2):454–462

    Article  Google Scholar 

  • Ward SE, Ostle NJ, McNamara NP, Bardgett RD (2010) Litter evenness influences short-term peatland decomposition processes. Oecologia 164(2):511–520

    Article  Google Scholar 

  • Wilson D, Alm J, Laine J, Byrne KA, Farrell EP, Tuittila ES (2009) Rewetting of cutaway peatlands: are we re-creating hot spots of methane emissions? Restor Ecol 17(6):796–806

    Article  Google Scholar 

  • Worrall F, Armstrong A, Adamson JK (2007) The effects of burning and sheep-grazing on water table depth and soil water quality in a upland peat. J Hydrol 339(1–2):1–14

    Article  Google Scholar 

  • Worrall F, Rowson JG, Evans MG, Pawson R, Daniels S, Bonn A (2011) Carbon fluxes from eroding peatlands—the carbon benefit of revegetation following wildfire. Earth Surf Proc Land 36(11):1487–1498

    Article  Google Scholar 

  • Yan W, Artz RRE, Johnson D (2008) Species-specific effects of plants colonising cutover peatlands on patterns of carbon source utilisation by soil microorganisms. Soil Biol Biochem 40(2):544–549

    Article  Google Scholar 

  • Yeloff DE, Labadz JC, Hunt CO, Higgitt DL, Foster IDL (2005) Blanket peat erosion and sediment yield in an upland reservoir catchment in the southern Pennines. UK. Earth Surf Proc Land 30(6):717–733

    Article  Google Scholar 

  • Yeloff DE, Labadz JC, Hunt CO (2006) Causes of Degradation and Erosion of a Blanket Mire in the southern Pennines, UK Mires and Peat 1

Download references

Acknowledgments

The authors gratefully acknowledge Madeline Bell and Gareth Clay for assistance with fieldwork. The authors are grateful for funding and support from DEFRA, the Moors for the Future Partnership and Natural England.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon D. Dixon.

Additional information

Responsible Editor: James Sickman

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixon, S.D., Qassim, S.M., Rowson, J.G. et al. Restoration effects on water table depths and CO2 fluxes from climatically marginal blanket bog. Biogeochemistry 118, 159–176 (2014). https://doi.org/10.1007/s10533-013-9915-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-013-9915-4

Keywords

Navigation