Skip to main content
Log in

Wet Explosion: a Universal and Efficient Pretreatment Process for Lignocellulosic Biorefineries

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass resources especially agricultural and forests residues, perennial crops, farm wastes, and the organic fraction of municipal solid waste hold significant potential for the widespread production of sustainable fuels, chemicals, and bioproducts worldwide. For biochemical conversion processes, deconstruction of lignocellulosic biomass into its components (cellulose, hemicellulose, and lignin) for further microbial conversion has been a major challenge due to the recalcitrant nature of lignocellulose. Thus pretreatment is prerequisite for efficient hydrolysis of lignocellulose and cost for such treatment is currently about one third of the overall processing costs in a cellulosic biorefinery. Thus, the development of a more efficient and cost-effective pretreatment method is crucial for the commercialization of lignocellulosic biorefineries. Wet explosion (WEx), a thermochemical pretreatment method with additional features of oxygen addition and explosive decompression, can be adjusted to different biomass feedstock and to subsequent bio-catalytic and microbial processes. The WEx pretreatment method has been successfully applied in combination with both microbial fermentation and anaerobic digestion processes using both agricultural and forest residues as well as manure fibers. Steam explosion, represents a related process to WEx pretreatment where high pressure is used but no oxygen is added. This process has been tested in demonstration scale while WEx is on its way to commercialization. Presented here is a summary of the basic concepts and parameters involved in WEx pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Somerville C, Youngs H, Taylor C et al (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–2

    Article  CAS  PubMed  Google Scholar 

  2. Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50:14–34

    Article  CAS  Google Scholar 

  3. Börjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26:7–13

    Article  PubMed  CAS  Google Scholar 

  4. Molinuevo-Salces B, Larsen SU, Biswas R et al. (2013) Key factors for achieving profitable biogas production from agricultural waste and sustainable biomass. Proc 13th World Congr Anaerob Dig

  5. Tilman D, Socolow R, Foley JA et al (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325(80-):270–271

    Article  CAS  PubMed  Google Scholar 

  6. Tsita KG, Pilavachi PA (2013) Evaluation of next generation biomass derived fuels for the transport sector. Energy Policy 62:443–455

    Article  CAS  Google Scholar 

  7. Escobar JC, Lora ES, Venturini OJ et al (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13:1275–1287

    Article  CAS  Google Scholar 

  8. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  9. Lynd LR, Larson E, Greene N et al (2009) The role of biomass in America’s energy future. Biofuels, Bioprod Biorefin 3:113–123

    Article  CAS  Google Scholar 

  10. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  CAS  PubMed  Google Scholar 

  11. Weiss A, Jérôme V, Burghardt D et al (2009) Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant. Appl Microbiol Biotechnol 84:987–1001

    Article  CAS  PubMed  Google Scholar 

  12. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Biogeosciences 41–65

  13. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68

    CAS  Google Scholar 

  14. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875

    Article  CAS  Google Scholar 

  15. Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  16. Brodeur G, Yau E, Badal K et al (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:787532

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–61

    Article  CAS  PubMed  Google Scholar 

  18. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–8

    Article  CAS  PubMed  Google Scholar 

  19. Agbor VB, Cicek N, Sparling R et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–85

    Article  CAS  PubMed  Google Scholar 

  20. Larsen J, Haven MØ, Thirup L (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenergy 46:36–45

    Article  CAS  Google Scholar 

  21. Janssen R, Turhollow AF, Rutz D, Mergner R (2013) Production facilities for second-generation biofuels in the USA and the EU—current status and future perspectives. Biofuels Bioprod Biorefin 7:647–665

    Article  CAS  Google Scholar 

  22. Ahring BK, Munck J (2006) Method for treating biomass and organic waste with the purpose of generating desired biologically based products.

  23. Biswas R, Ahring BK, Uellendahl H (2012) Improving biogas yields using an innovative concept for conversion of the fiber fraction of manure. Water Sci Technol 66:1751–1758

    Article  PubMed  Google Scholar 

  24. Rana D, Rana V, Ahring BK (2012) Producing high sugar concentrations from loblolly pine using wet explosion pretreatment. Bioresour Technol 121:61–67

    Article  CAS  PubMed  Google Scholar 

  25. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  CAS  PubMed  Google Scholar 

  26. Van Wyk JPH (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19:172–177

    Article  PubMed  Google Scholar 

  27. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    Article  CAS  Google Scholar 

  28. Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962

    Article  CAS  PubMed  Google Scholar 

  29. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  30. Biswas R, Uellendahl H, Ahring BK (2014) Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Biomass Bioenergy 61:104–113

    Article  CAS  Google Scholar 

  31. Howard RL, Abotsi E, van Rensburg EL et al (2004) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    Article  Google Scholar 

  32. Szulczyk KR, McCarl B a, Cornforth G (2010) Market penetration of ethanol. Renew Sustain Energy Rev 14:394–403

    Article  CAS  Google Scholar 

  33. Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes–factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–80

    Article  PubMed  CAS  Google Scholar 

  34. Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity—relating pH to biomatrix opening. N Biotechno 27:739–50

    Article  CAS  Google Scholar 

  35. Robbins MP, Evans G, Valentine J et al (2012) New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Prog Energy Combust Sci 38:138–155

    Article  Google Scholar 

  36. Palonen H, Thomsen AB, Tenkanen M et al (2004) Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl Biochem Biotechnol 117:1–17

    Article  CAS  PubMed  Google Scholar 

  37. Nguyen T-AD, Kim K-R, Han SJ et al (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101:7432–8

    Article  CAS  PubMed  Google Scholar 

  38. Singh A, Tuteja S, Singh N, Bishnoi NR (2011) Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production. Bioresour Technol 102:1773–1782

    Article  CAS  PubMed  Google Scholar 

  39. Saha BC, Cotta M a (2010) Comparison of pretreatment strategies for enzymatic saccharification and fermentation of barley straw to ethanol. N Biotechnol 27:10–16

    Article  CAS  PubMed  Google Scholar 

  40. Adapa P, Tabil L, Schoenau G (2009) Compaction characteristics of barley, canola, oat and wheat straw. Biosyst Eng 104:335–344

    Article  Google Scholar 

  41. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342

    Article  CAS  Google Scholar 

  42. Wyman CE, Balan V, Dale BE et al (2011) Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol 102:11052–62

    Article  CAS  PubMed  Google Scholar 

  43. Wen Z, Liao W, Chen S (2004) Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour Technol 91:31–39

    Article  CAS  PubMed  Google Scholar 

  44. McGinnis GD, Wilson WW, Mullen CE (1983) Biomass pretreatment with water and high-pressure oxygen. The wet-oxidation process. Ind Eng Chem Prod Res Dev 22:352–357

    Article  CAS  Google Scholar 

  45. Le Ngoc HT, Rémond C, Dheilly RM, Chabbert B (2010) Effect of harvesting date on the composition and saccharification of Miscanthus x giganteus. Bioresour Technol 101:8224–31

    Article  CAS  Google Scholar 

  46. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  CAS  Google Scholar 

  47. Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33

    Article  CAS  Google Scholar 

  48. Pu Y, Hu F, Huang F et al (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Cruz AG, Scullin C, Mu C et al (2013) Impact of high biomass loading on ionic liquid pretreatment. Biotechnol Biofuels 6:52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kumar L, Chandra R, Saddler J (2011) Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnol Bioeng 108:2300–2311

    Article  CAS  PubMed  Google Scholar 

  51. Bals B, Wedding C, Balan V et al (2011) Evaluating the impact of ammonia fiber expansion (AFEX) pretreatment conditions on the cost of ethanol production. Bioresour Technol 102:1277–1283

    Article  CAS  PubMed  Google Scholar 

  52. Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100:2411–8

    Article  CAS  PubMed  Google Scholar 

  53. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–57

    Article  CAS  PubMed  Google Scholar 

  54. Ruffell J, Levie B, Helle S, Duff S (2010) Pretreatment and enzymatic hydrolysis of recovered fibre for ethanol production. Bioresour Technol 101:2267–2272

    Article  CAS  PubMed  Google Scholar 

  55. Leu S-Y, Zhu JY (2012) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. BioEnergy Res 6:405–415

    Article  CAS  Google Scholar 

  56. Gao D, Haarmeyer C, Balan V et al (2014) Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnol Biofuels 7:175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48:408–15

    Article  CAS  PubMed  Google Scholar 

  58. Bellido C, Bolado S, Coca M et al (2011) Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour Technol 102:10868–74

    Article  CAS  PubMed  Google Scholar 

  59. Ahring BK, Biswas R, Ahamed A et al (2015) Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresour Technol 175:182–188

    Article  CAS  Google Scholar 

  60. Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82:15–26

    Article  CAS  PubMed  Google Scholar 

  61. Martín C, Marcet M, Thomsen AB (2008) Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse. BioResources 3:670–683

    Google Scholar 

  62. Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145:99–110

    Article  CAS  PubMed  Google Scholar 

  63. Sørensen A, Teller PJ, Hilstrøm T, Ahring BK (2008) Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment. Bioresour Technol 99:6602–7

    Article  PubMed  CAS  Google Scholar 

  64. Sendich EN, Laser M, Kim S et al (2008) Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresour Technol 99:8429–35

    Article  CAS  PubMed  Google Scholar 

  65. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Biswas R (2012) Optimization of the wet explosion pretreatment for increasing biogas and bioethanol yield of lignocellulosic biomass. PhD thesis, Department of Biotechnology, Chemistry and Environmental Engineering, Section for Sustainable Biotechnology, Aalborg University, Copenhagen, Denmark.

  67. Ahring BK, Langvad N (2008) Sustainable low cost production of lignocellulosic bioethanol—“The carbon slaughterhouse”. A process concept developed by BioGasol. Int Sugar J 110:184–190

    CAS  Google Scholar 

  68. Ahring BK, Westermann P (2007) Coproduction of bioethanol with other biofuels. Adv Biochem Eng Biotechnol 108:289–302

    CAS  PubMed  Google Scholar 

  69. Uellendahl H, Mladenovska Z, Ahring BK (2007) Wet oxidation of crude manure and manure fibers: substrate characteristics influencing the pretreatment efficiency for increasing the biogas yield of manure. Proc 11th World Congr Anaerob Dig pp 23–27

  70. Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    Article  CAS  Google Scholar 

  71. Ibbett R, Gaddipati S, Davies S et al (2011) The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies. Bioresour Technol 102:9272–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rasmussen H, Sørensen HR, Meyer AS (2014) Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr Res 385:45–57

    Article  CAS  PubMed  Google Scholar 

  73. Ibbett R, Gaddipati S, Greetham D et al (2014) The kinetics of inhibitor production resulting from hydrothermal deconstruction of wheat straw studied using a pressurised microwave reactor. Biotechnol Biofuels 7:45

    Article  PubMed Central  PubMed  Google Scholar 

  74. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  PubMed  Google Scholar 

  75. Kolaczkowski ST, Plucinski P, Beltran FJ et al (1999) Wet air oxidation: a review of process technologies and aspects in reactor design. Chem Eng J 73:143–160

    Article  CAS  Google Scholar 

  76. Lissens G, Klinke H, Verstraete W et al (2004) Wet oxidation pre-treatment of woody yard waste: parameter optimization and enzymatic digestibility for ethanol production. J Chem Technol Biotechnol 79:889–895

    Article  CAS  Google Scholar 

  77. Weil JR, Brewer M, Hendrickson R et al (1998) Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl Biochem Biotechnol 70:99–111

    Article  Google Scholar 

  78. Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Technol 40:426–432

    Article  CAS  Google Scholar 

  79. Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64:139–151

    Article  CAS  Google Scholar 

  80. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    CAS  Google Scholar 

  81. Rodríguez G, Lama A, Rodríguez R et al (2008) Olive stone an attractive source of bioactive and valuable compounds. Bioresour Technol 99:5261–5269

    Article  PubMed  CAS  Google Scholar 

  82. Xu JL, Wang ZY, Cheng JJ et al (2011) Bermuda grass as feedstock for biofuel production: a review. Bioresour Technol 102:7613–7620

    Article  CAS  PubMed  Google Scholar 

  83. Pedersen M, Johansen KS, Meyer AS (2011) Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol Biofuels 4:1–10

    Article  CAS  Google Scholar 

  84. Delgens J, Penaud V, Torrijos M et al (2000) Investigations on the changes in anaerobic biodegradability and biotoxicity of an industrial microbial biomass induced by a thermochemical pretreatment. Water Sci Technol 41:137–44

    Google Scholar 

  85. Chum HL, Johnson DK, Black SK (1990) Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Ind Eng Chem Res 29:156–162

    Article  CAS  Google Scholar 

  86. Dogaris I, Karapati S, Mamma D et al (2009) Hydrothermal processing and enzymatic hydrolysis of sorghum bagasse for fermentable carbohydrates production. Bioresour Technol 100:6543–6549

    Article  CAS  PubMed  Google Scholar 

  87. Sipos B, Réczey J, Somorai Z et al (2009) Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Appl Biochem Biotechnol 153:151–162

    Article  CAS  PubMed  Google Scholar 

  88. Arvaniti E, Bjerre AB, Schmidt JE (2012) Wet oxidation pretreatment of rape straw for ethanol production. Biomass Bioenergy 39:94–105

    Article  CAS  Google Scholar 

  89. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  90. Redding AP, Wang Z, Keshwani DR, Cheng JJ (2011) High temperature dilute acid pretreatment of coastal bermuda grass for enzymatic hydrolysis. Bioresour Technol 102:1415–1424

    Article  CAS  PubMed  Google Scholar 

  91. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37

    Article  PubMed  Google Scholar 

  92. Martín C, Klinke HB, Marcet M et al (2007) Study of the phenolic compounds formed during pretreatment of sugarcane bagasse by wet oxidation and steam explosion. Holzforschung 61:483–487

    Article  CAS  Google Scholar 

  93. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24

    Article  Google Scholar 

  94. Ahring BK, Jensen K, Nielsen P et al (1996) Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresour Technol 58:107–113

    Article  CAS  Google Scholar 

  95. Georgieva TI, Hou X, Hilstrøm T, Ahring BK (2008) Enzymatic hydrolysis and ethanol fermentation of high dry matter wet-exploded wheat straw at low enzyme loading. Appl Biochem Biotechnol 148:35–44

    Article  CAS  PubMed  Google Scholar 

  96. Petersson A, Thomsen MH, Hauggaard-Nielsen H, Thomsen A-B (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31:812–819

    Article  CAS  Google Scholar 

  97. Martín C, Thomsen AB (2007) Wet oxidation pretreatment of lignocellulosic residues of sugarcane, rice, cassava and peanuts for ethanol production. J Chem Technol Biotechnol 82:174–181

    Article  CAS  Google Scholar 

  98. Thomsen MH, Thygesen A, Jørgensen H et al (2006) Preliminary results on optimization of pilot scale pretreatment of wheat straw used in coproduction of bioethanol and electricity. Appl Biochem Biotechnol 129–132:448–60

    PubMed  Google Scholar 

  99. Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2:11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Zhu Z, Zhu M, Wu Z (2012) Pretreatment of sugarcane bagasse with NH4OH-H2O2 and ionic liquid for efficient hydrolysis and bioethanol production. Bioresour Technol 119:199–207

    Article  CAS  PubMed  Google Scholar 

  101. Biswas R, Uellendahl H, Ahring BK (2013) Conversion of c6 and c5 sugars in undetoxified wet exploded bagasse hydrolysates using Scheffersomyces (Pichia) stipitis cbs6054. AMB Express 3:1–7

    Article  CAS  Google Scholar 

  102. Ximenes E, Kim Y, Mosier N et al (2010) Inhibition of cellulases by phenols. Enzyme Microb Technol 46:170–176

    Article  CAS  Google Scholar 

  103. Ximenes E, Kim Y, Mosier N et al (2011) Deactivation of cellulases by phenols. Enzyme Microb Technol 48:54–60

    Article  CAS  PubMed  Google Scholar 

  104. Zeng Y, Zhao S, Yang S, Ding S-Y (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45

    Article  CAS  PubMed  Google Scholar 

  105. Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27C:150–158

    Article  CAS  Google Scholar 

  106. Monlau F, Barakat A, Steyer JP, Carrere H (2012) Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol 120:241–247

    Article  CAS  PubMed  Google Scholar 

  107. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

  108. Wang G, Gavala HN, Skiadas IV, Ahring BK (2009) Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity. Waste Manag 29:2830–2835

    Article  CAS  PubMed  Google Scholar 

  109. Lissens G, Thomsen AB, De Baere L et al (2004) Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste. Environ Sci Technol 38:3418–3424

    Article  CAS  PubMed  Google Scholar 

  110. Wang G (2009) Biogas production from energy crops and agriculture residues. 72:90.

  111. Strong PJ, Gapes DJ (2012) Thermal and thermo-chemical pre-treatment of four waste residues and the effect on acetic acid production and methane synthesis. Waste Manag 32:1669–77

    Article  CAS  PubMed  Google Scholar 

  112. Fox M, Noike T, Fox M, Noike T (2004) Wet oxidation pretreatment for the increase in anaerobic biodegradability of newspaper waste. Bioresour Technol 91:273–281

    Article  CAS  PubMed  Google Scholar 

  113. Menardo S, Balsari P, Dinuccio E, Gioelli F (2011) Thermal pre-treatment of solid fraction from mechanically-separated raw and digested slurry to increase methane yield. Bioresour Technol 102:2026–2032

    Article  CAS  PubMed  Google Scholar 

  114. Mladenovska Z, Hartmann H, Kvist T et al (2006) Thermal pretreatment of the solid fraction of manure: Impact on the biogas reactor performance and microbial community. Water Sci Technol 53:59–67

    Article  CAS  PubMed  Google Scholar 

  115. Bauer A, Bösch P, Friedl A, Amon T (2009) Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. J Biotechnol 142:50–55

    Article  CAS  PubMed  Google Scholar 

  116. Gavala HN, Angelidaki I, Ahring BK (2003) Kinetics and modeling of anaerobic digestion process. Adv Biochem Eng Biotechnol 81:57–93

    CAS  PubMed  Google Scholar 

  117. Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28:939–951

    Article  CAS  PubMed  Google Scholar 

  118. Ahring BK (2003) Perspectives for anaerobic digestion. Adv Biochem Eng Biotechnol 81:1–30

    CAS  PubMed  Google Scholar 

  119. Angelidaki I, Ellegaard L, Ahring BK (1999) A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol Bioeng 63:363–372

    Article  CAS  PubMed  Google Scholar 

  120. Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–91

    Article  CAS  PubMed  Google Scholar 

  121. Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  122. Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev 16:1462–1476

    Article  CAS  Google Scholar 

  123. Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–57

    Article  CAS  PubMed  Google Scholar 

  124. Doherty TV, Mora-Pale M, Foley SE et al (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12:1967

    Article  CAS  Google Scholar 

  125. Rodríguez H, Padmanabhan S, Poon G, Prausnitz JM (2011) Addition of ammonia and/or oxygen to an ionic liquid for delignification of miscanthus. Bioresour Technol 102:7946–52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitte K. Ahring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Uellendahl, H. & Ahring, B.K. Wet Explosion: a Universal and Efficient Pretreatment Process for Lignocellulosic Biorefineries. Bioenerg. Res. 8, 1101–1116 (2015). https://doi.org/10.1007/s12155-015-9590-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9590-5

Keywords

Navigation