Skip to main content
Log in

Degradation of 2,4,5-Trichlorophenoxyacetic acid by a Nocardioides simplex culture

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A Nocardioides simplex strain 3E was isolated which totally dechlorinated 2,4,5-trichlorophenoxyacetic acid and was capable of its utilization as the sole source of carbon. The mechanism of 2,4,5-trichlorophenoxyacetic acid degradation by this strain was investigated. Chloroaromatic metabolites that occur in the lag, exponential and stationary growth phases of the strain Nocardioides simplex 3E were isolated and identified bases on a combination of TLC, GC-MS and HPLC data. Decomposition of 2,4,5-trichlorophenoxyacetic acid at the initial stage was shown to proceed by two pathways: via the splitting of the two-carbon fragment to yield 2,4,5-trichlorophenol and the reductive dechlorination to produce 2,4-dichlorophenoxyacetic acid. Hydrolytic dechlorination of 2,4,5-trichlorophenoxyacetic acid was found to yield dichlorohydroxyphenoxyacetic acid, thus pointing to the possible existence of a third branch at the initial stage of degradation of the xenobiotic. 2,4,5-Trichlorophenol and 2,4-dichlorophenoxyacetic acid produced during the metabolism of 2,4,5-trichlorophenoxyacetic acid and in experiments with resting cells are utilized by the strain Nocardioides simplex 3E as growth substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

2,4,5-T:

2,4,5-trichlorophenoxyacetic acid

2,4,5-TCP:

2,4,5-trichlorophenol

References

  • Apajalachi JHA & Salkinoja-Salonen MS (1987) Complete dechlorination of tetra-chlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J. Bacteriol. 169: 5125–5130

    Google Scholar 

  • Bradley SG, Brownell GH & Clark J (1973) Genetic homologies among nocardiac and other actinomycetes. Can. J. Microbiol. 19: 1007–1014

    Google Scholar 

  • Chakrabarty AM (1987) New biotechnological approaches to environmental pollution problems. In: Hollenberg CP & Sahm M (Eds) Microbial Genetic Engineering and Enzyme Technology. Gustaw Fisher, Stuttgart-New York

    Google Scholar 

  • Collins MD (1985) Analysis of isoprenoid quinones. In: Gottschalk G (Ed) Methods in Microbiology, Vol 18 (pp 329–366)

  • Collins MD, Dorsch M & Stackebrandt E (1989) Transfer of Pimelobacter tumescens to Terrabacter gen. nov. as Terrabacter tumescens comb. nov. and of Pimelobacter jensenii to Nocardioides as Nocardioides jensenii comb. nov. Int. J. Syst. Bacteriol. 39: 1–6

    Google Scholar 

  • Collins MD & Stackebrandt E (1989) Molecular taxonomic studies on some LL-diaminopimelic acid-containing coryneforms from herbage: Description of Nocardioides fastidiosa sp. nov. FEMS Microbiol. Letters. 57: 289–294

    Google Scholar 

  • Farrow JAE & Collins MD (1983) DNA base composition, DNA/DNA homology and long-chain fatty acid studies on Streptococcus thermophilus and Streptococcus salivarius. J. Gen. Microbiol. 129: 1423–1432

    Google Scholar 

  • Goodfellow M (1971) Numerical taxonomy of some nocardioform bacteria. J. Gen. Microbiol. 69: 33–80

    Google Scholar 

  • Gordon RE, Barnett DA, Henderhan JE & Pang CH (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int. J. Syst. Bacteriol. 24: 54–63

    Google Scholar 

  • Gregersen T (1978) Rapid method for distinction of Gramnegative from Gram-positive bacteria. Eur. J. Appl. Microbiol. Biotechnol. 5: 123–127

    Google Scholar 

  • Karns JS, Kilbane JJ, Duttagupta S & Chakrabarty AM (1983) Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid degrading Pseudomonas cepacia. Appl. Environm. Microbiol. 46: 1176–1181

    Google Scholar 

  • Kirchner JG (1978) Thin-Layer Chromatography, Vol 1. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Kroppenstedt RM & Kutzner HJ (1981) Methods for Study of Streptomycetes. Isolation, Characterization, Chemotaxonomy. Brno

  • Lechevalier MP & Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A & Thayer WD (Eds) Actinomycete Taxonomy. Society for Industrial Microbiology, No 6 (pp 227–291). SUM special publication.

  • Owen RJ & Pitcher D (1985) Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. In: Goodfellow M & Minnikin DE (Eds) Chemical Methods in Bacterial Systematics (pp 67–93). Academic Press Inc., London

    Google Scholar 

  • Rochkind ML, Blackburn JM & Sayler GS (1986) Microbial Decomposition of Chlorinated Aromatic Compounds. EPA/600/2–86/090. US Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Rosenberg A & Alexander M (1980) Microbial metabolism of 2,4,5-trichlorophenoxyacetic acid in soil, soil suspensions, and axemic culture. J. Agr. Food Chem. 28: 297–302

    Google Scholar 

  • Scheifer KH & Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rew. 36: 402–477

    Google Scholar 

  • Schlenk H & Hellerman J (1960) Esterification of fatty acids with diazomethane on a small scale. Anal. Chem. 32: 1412–1414

    Google Scholar 

  • Szokolay A & Madaric A (1969) Eindimensional dunnschicht Chromatographie chlorierter Insektizide auf Fertigplatten mit mehrfacher Entwicklung. J. Chromatogr. 42: 509–519

    Google Scholar 

  • Suzuki K & Komagata K (1983) Pimelobacter gen. nov.—a new genus of coryne-form bacteria with LL-diaminopimelic acid in the cell wall. J. Gen. Appl. Microbiol. 29: 59–71

    Google Scholar 

  • Van den Tweel WJJ, Kok JB & de Bont JAM (1987) Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. Appl. Environm. Microbiol. 53: 810–815

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovleva, L.A., Pertsova, R.N., Evtushenko, L.I. et al. Degradation of 2,4,5-Trichlorophenoxyacetic acid by a Nocardioides simplex culture. Biodegradation 1, 263–271 (1990). https://doi.org/10.1007/BF00119763

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119763

Key words

Navigation