Skip to main content

Advertisement

Log in

Smooth Integration of Gansu Wind Farm into the Grid Using the Stator Flux-Oriented Vector Method and Fuzzy Logic Control

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Gansu province wind energy potential in China is around 237 GW. According to the schedule, 20 GW wind energy is connected to the grid by 2020. However, there is a chance of instability in the presence of big intermittency. To integrate this huge generated wind power, a reliable control strategy is required. The proposed portable power plant (PPP) energy storage system is fully compatible with a smart grid and mitigates the dispatching complexity and provides better designing and implementation of Gansu wind farm in China. In a two-way power flow, when the generation is bigger than the load demand, the additional power is stored in the PPP for future use, and when the demand is higher than the total generation, the stored power is applied to feed the grid. Also the PPP can charge the grid during peak demand periods or when the local network is stressed. An intelligent controller is linked with PPP to monitor the power flow. The stator flux-oriented vector method is used for modeling the system. Then, a fuzzy controller is applied to adjust the modulation index of PWM inverter and also uses energy storage units to stabilize the output of the power plant. Real field data of the Gansu wind farm with 24-h horizon have been applied on the proposed system. The results show the high performance of the fuzzy-based PPP system in the presence of fluctuations and increase the efficiency of the power system by storing energy through PPP. With a large-scale plan for application of smart grid and renewable energy sources in China, this paper introduces an essential step of this vision to provide a feasible framework for future large-scale smart grid projects in China as well as stable operation of Gansu wind farm as the biggest wind farm in mainland when it is completed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

x :

Value of the linguistic variable

\(x_{\min } , x_{\max } \) :

Range limits of linguistic variable x

\(f\left( x \right) \) :

Membership function of input and output

COA:

Center of area defuzzifier

a :

Height of peak value of Gaussian curve

b :

Center of the Gaussian curve

c :

Standard deviation of the Gaussian curve

m :

Modulation index of inverter

\(V_\mathrm{out} \) :

Output voltage of the system

\(V_\mathrm{ref} \) :

Nominal voltage of the system

\(u_\mathrm{s} \) :

Stator voltage

\(u_\mathrm{r} \) :

Rotor voltage

\(\psi _\mathrm{s} \) :

Stator flux linkage

\(\psi _\mathrm{r} \) :

Rotor flux linkage

\(i_\mathrm{s} \) :

Stator current

\(i_\mathrm{r} \) :

Rotor current

\(r_\mathrm{s} \) :

Stator resistance

\(r_\mathrm{r} \) :

Rotor resistance

\(L_\mathrm{s} \) :

Stator inductance

\(L_\mathrm{r} \) :

Rotor inductance

\(L_\mathrm{m} \) :

Magnetizing inductance

\(\omega _\mathrm{s} \) :

Grid frequency

\(\omega _\mathrm{r} \) :

Rotor frequency

\(T_\mathrm{m} \) :

Mechanical torque of turbine

\(T_\mathrm{e} \) :

Electrical torque of turbine

\(\theta _\mathrm{s} \) :

Stator flux angle

\(Z_\mathrm{e} \) :

Grid impedance

References

  1. Moussavi, S.Z.; Kashkooli, F.R.: Small signal stability assessment of power systems with large-scale wind farms. Arab. J. Sci. Eng. 38, 2493–2502 (2013)

    Article  Google Scholar 

  2. Mohandas, S.P.; Chandel, A.K.: Transient stability enhancement of a grid with HVDC interconnected offshore wind farm using STATCOM. Arab. J. Sci. Eng. 38, 2481–2491 (2013)

    Article  Google Scholar 

  3. Zare, A.; Nayeripour, M.; Kang, X.; Kheshti, M.; Niknam, T.: Fuzzy controller design of TCSC with ANFIS to improve the dynamic stability of power system. IACSIT Int. J. Eng. Technol. 4(3), 248–252 (2012)

    Article  Google Scholar 

  4. Li, F.X.; Qiao, W.; Sun, H.B.; et al.: Smart transmission grid: vision and framework. IEEE Trans. Smart Grid 1(2), 168–177 (2010)

    Article  Google Scholar 

  5. Kabalci, E.: A smart monitoring infrastructure design for distributed renewable energy systems. Energy Convers. Manag. 90, 336–346 (2015)

    Article  Google Scholar 

  6. Fahrioglu, M.; Alvarado, F.L.; Lasseter, R.H.; Yong, T.: Supplementing demand management programs with distributed generation options. Electr. Power Syst. Res. 84, 195–200 (2012)

    Article  Google Scholar 

  7. Amin, M.: North America’s electricity infrastructure: are we ready for more perfect storms? IEEE Secur. Priv. 1(5), 19–25 (2003)

    Article  Google Scholar 

  8. Amin, M.: Security challenges for the electricity infrastructure. Special issue of the IEEE Comput. Mag. Secur. Priv. 35(4), 8–10 (2002)

  9. Amin, S.M.: Smart grid: overview, issues and opportunities. advances and challenges in sensing, modeling, simulation, optimization and control. Eur. J. Control 5–6, 547–567 (2011)

    Article  MathSciNet  Google Scholar 

  10. Costa, S.A.H.; Costa, C.A.: Smart grid in the reduction of CO\(_{2}\) emissions in the atmosphere. In: 2013 IEEE PES Conference On Innovative Smart Grid Technologies Latin America, pp. 1–7, 15–17 April 2013 (2013)

  11. Fooladivanda, D.; Rosenberg, C.; Garg, S.: Energy storage and regulation: an analysis. IEEE Trans. Smart Grid 7(4), 1813–1823 (2016)

    Article  Google Scholar 

  12. Xu, Y.; Zhang, W.; Hug, G.; Kar, S.; Li, Z.: Cooperative control of distributed energy storage systems in a microgrid. IEEE Trans. Smart Grid 6(1), 238–248 (2015)

    Article  Google Scholar 

  13. De Ven, P.M.V.; Hegde, N.; Massoulie, L.; Salonidis, T.: Optimal control of end-user energy storage. IEEE Trans. Smart Grid 4(2), 789–797 (2013)

    Article  Google Scholar 

  14. Chen, S.X.; Gooi, H.B.; Wang, M.Q.: Sizing of energy storage for microgrids. IEEE Trans. Smart Grid 3(1), 142–151 (2012)

    Article  Google Scholar 

  15. Yao, D.L.; Choi, S.S.; Tseng, K.J.; Lie, T.T.: A statistical approach to the design of a dispatchable wind power-battery energy storage system. IEEE Trans. Energy Convers. 24(4), 916–925 (2009)

    Article  Google Scholar 

  16. Fazeli, A.; Sumner, M.; Johnson, M.C.; Christopher, E.: Real-time deterministic power flow control through dispatch of distributed energy resources. IET Gener. Transm. Distrib. 9(16), 2724–2735 (2015)

    Article  Google Scholar 

  17. Kheshti, M.; Kang, X.; Song, G.; Jiao, Z.: Modeling and fault analysis of doubly fed induction generators for Gansu wind farm application. Can. J. Electr. Comput. Eng. 38(1), 52–64 (2015)

    Article  Google Scholar 

  18. Marinelli, M.; Maule, P.; Hahmann, A.N.; Gehrke, O.; Nørgrd, P.B.; Cutululis, N.A.: Wind and photovoltaic large-scale regional models for hourly production evaluation. IEEE Trans. Sustain. Energy 6(3), 916–923 (2015)

    Article  Google Scholar 

  19. Raj, M.D.; Muthuselvan, N.B.; Somasundaram, P.: Swarm-inspired artificial bee colony algorithm for solving optimal power flow with wind farm. Arab. J. Sci. Eng. 39, 4775–4787 (2014)

    Article  MathSciNet  Google Scholar 

  20. Eltamaly, A.M.; Addoweesh, K.E.; Bawa, U.; Mohamed, M.A.: Economic modeling of hybrid renewable energy system: A case study in Saudi Arabia. Arab. J. Sci. Eng. 39(5), 3827–3839 (2014)

    Article  Google Scholar 

  21. Basit, A.; Hansen, A.D.; Sørensen, P.E.; Giannopoulos, G.: Real-time impact of power balancing on power system operation with large scale integration of wind power. J. Mod. Power Syst. Clean Energy 5(2), 202–210 (2015)

    Article  Google Scholar 

  22. Chakrabarti, M.H.; Hajimolana, S.A.; Mjalli, F.S.; Saleem, M.; Mustafa, I.: Arab. J. Sci. Eng. 38, 723–739 (2013)

    Article  Google Scholar 

  23. Li, X.; Hui, D.; Lai, X.: Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations. IEEE Trans. Sustain. Energy. 4(2), 464–473 (2013)

    Article  MathSciNet  Google Scholar 

  24. Xu, L.; Chen, D.: Control and operation of a DC microgrid with variable generation and energy storage. IEEE Trans. Power Deliv. 26(4), 2513–2522 (2011)

    Article  Google Scholar 

  25. Nayeripour, M.; Kheshti, M. (eds.): Renewable Energy-Trends and Applications. INTECH Publication, Croatia (2011)

    Google Scholar 

  26. Nayeripour, M.; Kheshti, M. (eds.): Sustainable Growth and Applications in Renewable Energy Sources. INTECH Publication, Croatia (2011)

    Google Scholar 

  27. Kheshti, M.; Nayeripour, M.; Majidpour, M.D.: Fuzzy dispatching of solar energy in distribution system. Appl. Sol. Energy 47, 105–111 (2011)

  28. Kheshti, M.; Kang, X.: A new control method of wind energy in power system. In: 11th International Conference on Developments in Power Systems Protection, Birmingham, UK, pp. 1–5, 23–26 April (2012)

  29. Bradwell, D.J.; Kim, H.; Sirk, A.H.C.; Sadoway, D.R.: Magnesium-antimony liquid metal battery for stationary energy storage. J. Am. Chem. Soc. 134(4), 1895–1897 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Kheshti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheshti, M., Kang, X. & Jiarula, Y. Smooth Integration of Gansu Wind Farm into the Grid Using the Stator Flux-Oriented Vector Method and Fuzzy Logic Control. Arab J Sci Eng 42, 5059–5069 (2017). https://doi.org/10.1007/s13369-017-2596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2596-x

Keywords

Navigation