Skip to main content
Log in

Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the development of antenna-coupled thin-film nanometer Ni-NiO-Ni diodes which are used to detect 10.6 μm CO2-laser radiation. The Ni-NiO-Ni diodes have a minimum contact area of 0.056 μm2. This is smaller than those of any previously fabricated thin-film Metal-metalOxide-Metal (MOM) diodes. By measuring the second derivative of the dc current-voltage characteristics I(V), we demonstrate that the nonlinearity of the dc I(V) characteristics of our Ni-NiO-Ni diodes is larger than that of the dc I(V) characteristics of thin-film MOM diodes fabricated before by other authors. It is comparable to the nonlinearity of the dc I(V) characteristics of point-contact MOM diodes. Furthermore, we show that the polarisation-dependent infrared response of the Ni-NiO-Ni diodes is due to antenna coupling and that the polarisation-independent response is mainly of thermal origin. Consequently, the heating of the Ni-NiO-Ni diodes is due to the absorption of the incident CO2-laser radiation in the SiO2, and dissipation of the laser-induced ac antenna currents in the antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.O. Hocker, D.R. Sokoloff, V. Daneu, A. Szoke, A. Javan: Appl. Phys. Lett. 12, 401 (1968)

    Google Scholar 

  2. S.M. Faris, T.K. Gustafson, J.C. Wiesner: IEEE J. QE-9, 737 (1973)

    Google Scholar 

  3. D.J.E. Knight, P.T. Woods: J. Phys. E 9, 898 (1976)

    Google Scholar 

  4. J.G. Small, G.M. Elchinger, A. Javan, A. Sanchez, F.J. Bachner, D.L. Smythe: Appl. Phys. Lett. 24, 275 (1974)

    Google Scholar 

  5. S.Y. Wang, T. Izawa, T.K. Gustafson: Appl. Phys. Lett. 27, 481 (1975)

    Google Scholar 

  6. E. Wiesendanger, F.K. Kneubühl: Appl. Phys. 13, 343 (1977)

    Google Scholar 

  7. M. Heiblum, S. Wang, J.R. Whinnery, T.K. Gustafson: IEEE J. QE-14, 159 (1978)

    Google Scholar 

  8. A.B. Hoofring, V.J. Kapoor, W. Krawzconek: J. Appl. Phys. 66, 430 (1989)

    Google Scholar 

  9. A. Sanchez, C.F. Davis Jr., K.C. Liu, A. Javan: J. Appl. Phys. 49, 5270 (1978)

    Google Scholar 

  10. D.B. Rutledge, S.E. Schwarz, A.T. Adams: Infrared Phys. 18, 713 (1978)

    Google Scholar 

  11. L.M. Matarrese, K.M. Evenson: Appl. Phys. Lett. 17, 8 (1970)

    Google Scholar 

  12. I. Wilke, W. Herrmann, F.K. Kneubühl: Appl. Phys. B 58, 87 (1994)

    Google Scholar 

  13. C.R. Brewitt-Taylor, D.J. Gunton, H.D. Rees: Electron. Lett. 17, 729 (1981)

    Google Scholar 

  14. H. Rothermel: MPI für extraterrestrische Physik, Garching, private communication (1991)

  15. Y. Oppliger, J.M. Stauffer, F. Vasey: Microelectron. Eng. 13, 193 (1991)

    Google Scholar 

  16. K.M. Evenson, M. Inguscio, D.A. Jennings: J. Appl. Phys. 57, 956 (1985)

    Google Scholar 

  17. K.M. Evenson: In Quantum Metrology and Fundamental Physical Constants, ed. by P.H. Cutler, A.A. Lucas, Nato ASI Ser. B, Vol. 98 (1983) pp. 181–207

  18. C.C. Bradley, G.J. Edwards: IEEE J. QE-9, 548 (1973)

    Google Scholar 

  19. T.K. Gustafson, R.V. Schmidt, J.R. Perucca: Appl. Phys. Lett. 24, 620 (1974)

    Google Scholar 

  20. G.M. Elchinger, A. Sanchez, C.F. Davis Jr., A. Javan: J. Appl. Phys. 47, 591 (1976)

    Google Scholar 

  21. A. Edgar, A. Zyskowski: J. Phys. E 18, 863 (1985)

    Google Scholar 

  22. T.K. Gustafson, T.J. Bridges: Appl. Phys. Lett. 25, 56 (1974)

    Google Scholar 

  23. A.N. Gerritsen: In Handbuch der Physik, ed. by S. Flügge, Vol. 19 (Springer, Berlin, Heidelberg 1956) p. 137

    Google Scholar 

  24. J.G. Simmons: J. Appl. Phys. 35, 2472 (1964)

    Google Scholar 

  25. E.M. Wise, R.H. Schaefer: Met. Alloys 16, 424 (1942)

    Google Scholar 

  26. N.W. Ashcroft, N.D. Mermin: Solid State Physics (HRW Int'l Ed., Philadelphia 1988)

    Google Scholar 

  27. D.C. Larsen: Phys. Thin Films 6, 81 (1971)

    Google Scholar 

  28. J. Simmons: J. Appl. Phys. 34, 1793 (1963)

    Google Scholar 

  29. R.W. van der Heijden, A.G.M. Jansen, J.H.M. Stoelinga, H.M. Swartjes, P. Wyder: Appl. Phys. Lett. 37, 245 (1980)

    Google Scholar 

  30. R. van der Heijden: Far-infrared investigations of the high-frequency conductivity of metals under quantum conditions: semimetals in high magnetic fields and point contact. Dissertation, University of Nijmegen (1983)

  31. R.W. van der Heijden, H.M. Swartjes, P. Wyder: J. Appl. Phys. 55, 1003 (1984)

    Google Scholar 

  32. A.P. van Gelder, A.G.M. Jansen, P. Wyder: Phys. Rev. B 22, 1515 (1980)

    Google Scholar 

  33. N. Fuschillo, B. Lalevic, B. Leung: Thin Solid Films 24, 181 (1974)

    Google Scholar 

  34. H.C. Torrey, C.A. Whitmer: Crystal Rectifiers (McGraw-Hill, New York 1948)

    Google Scholar 

  35. B.G. Whitford: IEEE J. QE-18, 428 (1982)

    Google Scholar 

  36. A.A. Lucas, P.H. Cutler: Solid State Commun. 13, 361 (1973)

    Google Scholar 

  37. T.E. Sullivan, P.H. Cutler, A.A. Lucas: Surf. Sci. 54, 561 (1976)

    Google Scholar 

  38. T.E. Sullivan, A.A. Lucas, P.H. Cutler: Appl. Phys. 14, 289 (1977)

    Google Scholar 

  39. E. Sakuma: Jpn. J. Appl. Phys. 14, 569 (1975)

    Google Scholar 

  40. I.K. Yanson, N.I. Bogatina: JETP Lett. 16, 279 (1972)

    Google Scholar 

  41. B.I. Verkin, I.K. Yanson, I.O. Kulik, O.I. Shklyarevski, A.A. Lysykh, Yu.G. Naydyuk: Solid State Commun. 30, 215 (1979)

    Google Scholar 

  42. A.A. Lysykh, I.K. Yanson, K. Shklarevskii, Yu.G. Naidyuk: Sov. J. Low Temp. Phys. 6, 224 (1980)

    Google Scholar 

  43. A.G.M. Jansen, A.P. van Gelder, P. Wyder: J. Phys. C 13, 6073 (1980)

    Google Scholar 

  44. A.G.M. Jansen, P. Wyder, H. van Kempen: Europhys. News 18, 21 (1987)

    Google Scholar 

  45. B.-I. Twu, S.E. Schwarz: Appl. Phys. Lett. 25, 595 (1974)

    Google Scholar 

  46. Y. Yasuoka, T. Sakurada, T. Miyaka: Jpn. J. Appl. Phys. 17, 171 (1978)

    Google Scholar 

  47. H. Meinke, F.W. Gundlach: Taschenbuch der Hochfrequenztechnik, 4th edn. (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  48. E.D. Palik (ed.): Handbook of Optical Constants of Solids (Academic, New York 1985)

    Google Scholar 

  49. H.C. Torrey, C.A. Whitmer: Crystal Rectifiers (McGraw-Hill, New York 1948)

    Google Scholar 

  50. H.W. Icenogle, B.C. Platt, W.L. Wolfe: Appl. Opt. 15, 2348 (1976)

    Google Scholar 

  51. A. Smakula: Opt. Acta 9, 205 (1962)

    Google Scholar 

  52. Landoldt-Börnstein: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, ed. by O. Madelung, K.-H. Hellwege, 6th edn. (Springer, Berlin, Heidelberg 1962)

    Google Scholar 

  53. M. Born, E. Wolf: Principles of Optics, 6th edn. (Pergamon, New York 1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilke, I., Oppliger, Y., Herrmann, W. et al. Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation. Appl. Phys. A 58, 329–341 (1994). https://doi.org/10.1007/BF00323606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323606

PACS

Navigation