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Abstract

Extreme events such as heat waves, cold spells, floods, droughts, tropical cyclones,
and tornadoes have potentially devastating impacts on natural and engineered sys-
tems, and human communities, worldwide. Stakeholder decisions about critical infras-
tructures, natural resources, emergency preparedness and humanitarian aid typically5

need to be made at local to regional scales over seasonal to decadal planning horizons.
However, credible climate change attribution and reliable projections at more localized
and shorter time scales remain grand challenges. Long-standing gaps include inade-
quate understanding of processes such as cloud physics and ocean-land-atmosphere
interactions, limitations of physics-based computer models, and the importance of in-10

trinsic climate system variability at decadal horizons. Meanwhile, the growing size and
complexity of climate data from model simulations and remote sensors increases op-
portunities to address these scientific gaps. This perspectives article explores the pos-
sibility that physically cognizant mining of massive climate data may lead to signifi-
cant advances in generating credible predictive insights about climate extremes and15

in turn translating them to actionable metrics and information for adaptation and pol-
icy. Specifically, we propose that data mining techniques geared towards extremes can
help tackle the grand challenges in the development of interpretable climate projec-
tions, predictability, and uncertainty assessments. To be successful, scalable methods
will need to handle what has been called “Big Data” to tease out elusive but robust20

statistics of extremes and change from what is ultimately small data. Physically-based
relationships (where available) and conceptual understanding (where appropriate) are
needed to guide methods development and interpretation of results. Such approaches
may be especially relevant in situations where computer models may not be able to fully
encapsulate current process understanding, yet the wealth of data may offer additional25

insights. Large-scale interdisciplinary team efforts, involving domain experts and indi-
vidual researchers who span disciplines, will be necessary to address the challenge.
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1 Introduction

Observed and projected changes in the frequency and severity of heat waves and
heavy precipitation events have been explicitly linked to human-induced climate change
by the recent literature, as summarized in the IPCC Special Report on Managing the
Risk of Extreme Events and Disasters to Advance Climate Change Adaptation, also5

known as the IPCC-SREX (Field et al., 2012) and in a perspective article in Nature
Climate Change (Coumou and Rahmstorf, 2012). However, the impact of the changing
climate on other types of extremes such as severe weather and hydrological events,
including floods, droughts, storms, hurricanes, cyclones, and tornadoes, remains un-
clear. Mitigation policy requires quantifying the benefits of reducing emissions in terms10

of impacts avoided. Adaptation to natural hazards and constrained natural resources
requires credible projections of extremes, along with their uncertainties, at local to re-
gional scales. Delineating possible links between changes in weather extremes with
changes in climate or land use are therefore directly relevant to both mitigation and
adaptation planning.15

High-resolution global climate models, in conjunction with downscaling based on sta-
tistical approaches or regional climate models, may bridge the gap. Unfortunately, the
recent literature and our analyses suggest that physics-based modeling alone may not
be able to keep pace with the urgency of stakeholder requirements. Each generation
of climate models brings new advances, such as the recent expansion of more tra-20

ditional atmosphere-ocean general circulation models into fully coupled earth system
modelling systems in the Coupled Model Intercomparison Project version 5 (CMIP;
Taylor et al., 2012). Coupling new models brings its own issues, however, and eval-
uation studies suggest that, despite noticeable improvements, regional-scale biases
persist in the latest generation of climate models, despite enhanced resolutions and25

the incorporation of additional physical and biogeochemical processes (e.g. Ryu and
Hayhoe, 2013; Kumar et al., 2014).
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Climate extremes continue to represent a major challenge. Consider the example
of droughts: according to the IPCC-AR5 (IPCC, 2013) report on the “physical science
basis” of climate change, scientific confidence in the ability to characterize and project
droughts may have reduced over the last several years (see also Table SPM.1 in the
IPCC-AR5 summary for policymakers). Two recent papers on droughts, one published5

in Nature Climate Change (Dai, 2012) and another in Nature (Sheffield et al., 2012),
offered diametrically opposite insights. While Dai (2012) concluded that droughts glob-
ally have shown an increasing trend in the past and will worsen in the future; Sheffield
et al. (2012) found a lack of trends in global drought over the past 60 yr. The differing
insights are summarized by Trenberth et al. (2014) in a perspectives article in Nature10

Climate Change.
Climate-related data are rapidly increasing in size and complexity (Overpeck et al.,

2011; Taylor et al., 2012). This begs the question whether data science, which has al-
ready transformed disparate data-rich fields from biological sciences to social media to
information retrieval, may also offer fresh insights to address fundamental knowledge-15

gaps related to climate extremes. Going back to the droughts example, Trenberth et
al. (2014) suggest that the reasons for the diverging insights were the different choices
of underlying data and metrics.

While confidence in scientific understanding and attribution of observed trends to
human-induced climate change continues to increase, the IPCC-SREX highlights key20

gaps in present scientific understanding of climate extremes. Previous and current
research on climate extremes typically focuses on one of three areas: the physical
science basis, statistics of extremes, or adaptation and potential impacts. Physical
science-based analyses tend to emphasize mechanistic understanding and attribution;
statistical analyses generally develop data-driven techniques for descriptive and pre-25

dictive analyses (for example, recent applications of extreme value theory, change de-
tection and sparse regression to climate extremes); and impact studies tend to focus on
exposure, vulnerability and consequence assessments. Despite significant progress in
all three areas, our ability to establish credible links between climate variability, climate
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change, and climate extremes is still insufficient to facilitate confident and risk-informed
decision-making, particularly at regional and decadal scales.

Reliable projections need to generate interpretable predictive insights while account-
ing for the knowledge-gaps and intrinsic system variability. The wealth of data contin-
ues to increase, as does our conceptual understanding of processes that may gen-5

erate extremes, such as the influence of oceans and climate oscillators, and local or
regional terrestrial drivers. The lack of significant improvement in the latest genera-
tion of computer models may suggest that the enhanced understanding may not yet
translate to improved projections. Data-driven methods by themselves may not be ad-
equate for long-lead time projections of a nonlinear dynamical system such as climate.10

Data assimilation methods have limited ability to contribute in the future when pro-
jection lead times are large. However, dependence characterization and data-driven
predictive modeling may be conditioned on the results of physics-based models, and
further based on physical or process understanding, that in turn may be difficult to cap-
ture within the current set of model parameterizations. In such cases, pure data-driven15

methods may lead to spurious correlations or predictions, but physical constraints in
the design and interpretation of such methods may guard against the possibility. Thus,
ocean or atmospheric temperatures from climate models may generate better charac-
terizations and projections of precipitation extremes statistics with uncertainties (e.g.,
Kao and Ganguly, 2011; Steinhaeuser et al., 2012).20

2 The climate science question: interdisciplinary perspectives

This article focuses on what may be viewed as three inter-related grand challenges in
climate change studies: (1) characterization of climate extremes, (2) comprehensive
assessment of uncertainties, and (3) enhanced predictive understanding, with a goal
of improving projections. Climate and earth sciences have grown from data–poor to25

data–rich sciences over the last couple of decades, and are likely to be at the forefront
of societal challenges pertaining to Big Data in this century (Overpeck et al., 2011).
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Can the rapid and recent increases in computational power and analysis capabilities,
as well as steady progress on foundational theories in statistics, nonlinear physics, in-
formation theory, signal processing, computer science, and econometrics, enable fun-
damental advances in climate science through computational data sciences? Can the
data science methods be carefully designed to avoid spurious generalizations, and to5

extract physically-based patterns that can be interpreted by climate scientists?
Solutions for massive data volume and complexity have already made their mark

in scientific and engineering disciplines as diverse as biology, astrophysics, and Inter-
net phenomena such as Google or Facebook (Berriman et al., 2010; Langmead et al.,
2010; Yang et al., 2011) and spawned new fields of research such as sensor networks10

(Ganguly et al., 2009a). Climate problems increasingly demand data-driven solutions,
but the relevant approaches need to consider relatively unique challenges not present,
or not as predominant, in fields where data sciences have proved enormously suc-
cessful thus far. Thus, carefully-designed parallel and distributed algorithms may be
required to ensure that sophisticated methods designed for nonlinear processes and15

complex long-memory or long-range associations can scale and remain resilient to
spurious “discoveries”.

3 Big data challenges in climate science

Over the last few decades, climate data has expanded rapidly in both size and complex-
ity. While weather station records remain small and relatively manageable, the advent20

of the satellite era and remote sensors in general, and the evolution of high-resolution
weather and climate models, both of which divide the planet up into ever-decreasing
grid-sizes, are the primary factors driving data increases. Ensembles of archived cli-
mate model outputs have grown from a few hundred terabytes after the last IPCC as-
sessment cycle (AR4) to the petabyte scale (AR5). The global archive of climate data25

is projected to grow to about 50 PB around 2015, exceed 100 PB by 2020 and reach up
to 350 PB by 2030, mainly from model simulations and remote sensing observations,
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but also from in-situ observations (Overpeck et al., 2011; Taylor et al., 2012). The pace
of data growth appears to suggest that even these projections may represent lower
bounds.

Disk space and processing speeds are perennial challenges. Today, however, the
major technical barriers for mining massive data lie in scalable data–intensive analysis5

capabilities, where fast storage and scalable input/output are major concerns (Schadt
et al., 2010; Trelles et al., 2011), along with mathematical and algorithmic capabilities.
Data–driven methods are not new in climate, meteorology or geophysics; the novelty is
in the scalability challenges for massive data as well as the opportunities to infer novel
process understanding and new predictive insights.10

Recent developments in data science have sometimes focused almost exclusively
on scalability to massive data rather than data complexity (Armbrust et al., 2010; Dean
and Ghemawat, 2008). New methods need to consider several crucial aspects that are
rather unique to climate science and related disciplines: climate data exhibit complex
space-time dependence; the data-generation processes are highly nonlinear and may15

be extremely sensitive to initial conditions; variability may occur over long time frames
and thus may be difficult to evaluate with limited historical data; spatial dependencies
may be based on proximity as well as long range teleconnections with time lags or
leads, which makes the discovery of associations a combinatorial challenge; and ex-
tremes, unusual patterns or anomalies are of interest, particularly at higher resolutions.20

The dominance of nonlinear and non-stationary processes, combined with the need for
projections (e.g., for extreme values) over long-lead time precludes data-driven projec-
tions alone.

Predictability studies (e.g., Karamperidou et al., 2014) leading to characterization of
irreducible uncertainties is a major challenge in climate science that may be relatively25

unique among the urgent Big Data challenge areas. Sterk et al. (2012) measured pre-
dictability of extremes with relatively simple geophysical models using finite-time Lya-
punov exponent. Delsole and Tippett (2009a, b) proposed a measure based on aver-
age predictability considering all lead times without time averaging. Koster et al. (2000)
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studied predictability of precipitation in the context of climate variability. Branstator and
Teng (2010) and Branstator et al. (2012) studied decadal-scale predictability from an
ensemble of multiple initial condition runs using relative entropy. Giannakis and Majda
et al. (2012) have used data driven methods for dynamical systems (with applications
in climate atmosphere ocean science) to quantify predictability and extract spatiotem-5

poral patterns. The approaches are relatively new to climate but have tremendous im-
plications for stakeholders and decision makers. The implications of adapting these
methods to Big Data have not been studied in detail.

Big Data has its own unique problems. A major challenge related to working with
large datasets is avoiding false positives, especially when looking for patterns in the10

data that are rare. The problem arises from the fact that when a large amount of data
is considered, the probability of encountering random occurrence of the target pattern
in the data is also high. From the view-point of statistical tests, the p value has little
relevance for a sample size big enough to be called really Big Data. Thus, virtually
any hypothesis will be accepted if the sample size is large enough, since the p value15

of the null hypothesis will always be almost zero. Bonferroni correction, a theorem of
statistics that gives a statistically naive way to avoid these false positive responses
to a search through the data, has been used widely in the past with large datasets.
However, avoiding false discoveries is still an active research area and several new
methods have been proposed in last two decades (Benjamini and Hochberg, 1995;20

Bogdan et al., 2008; Dudoit et al., 2003; Efron, 2007) that improve upon the Bonferroni
theorem both by new methodological and theoretical developments. Another problem
with big data arises if one tries to identify the distribution a variable follows based solely
on p values. The goodness-of-fit tests become extremely sensitive to small, inconse-
quential changes when the sample size is large. The issue of false positives with Big25

Data has been discussed in the context of a commonly used statistical approach for cli-
mate extremes. Resampling techniques have been used to study properties of climate
extremes (e.g., Kharin and Zwiers, 2005; Kharin et al., 2007), where the authors also
list caveats and challenges for such usage. A recent proposal for bootstrap in big data
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(Kleiner et al., 2012) and other alternatives require further study, in order to understand
how to use resampling for extremes of climate variables from large datasets.

Due to this ever-present risk of coming up with spurious discoveries and insights
with Big Data, the importance of physics-guided data mining needs to be emphasized
further. We can either use physical constraints to validate the data-driven knowledge5

discoveries or incorporate the physical constraints in the knowledge discovery process
by mapping them either as statistical constraints or in the selection of variables and
distributions.

4 Societal urgency and state of the science

The types of extreme events discussed here have the potential to cause significant dev-10

astation; as shown in Fig. 1, the largest number of deaths results from droughts, tropical
cyclones and floods, and the most significant economic loss from hurricanes/cyclones
and floods. Mortality and economic losses from tornadoes and severe thunderstorms
has been of significant concern in the United States, given the devastating losses in
2011 (Simmons et al., 2012). The size depicting each type of hazard provides a mea-15

sure of our uncertainty under climate change; unfortunately, we find that the level of
uncertainty is generally high for the most destructive hazards (Bouwer, 2011). Even for
the relatively better understood temperature extremes, such as heat waves and cold
snaps, large uncertainties remain, especially at regional scales (Ganguly et al., 2009b).
Hazards are expected to be more severe for poorer and more vulnerable regions; de-20

veloped economies, however, are not immune to loss either, as demonstrated by Paris
and Chicago heatwave mortality (Hayhoe et al., 2010) and United States Gulf Coast
hurricane impacts (Burby, 2006). Recent studies have advanced our understanding
of observed trends in heavy precipitation or flooding and attributions to global warm-
ing (Min et al., 2011; Pall et al., 2011). However, uncertainties remain in interpreting25

observed extremes (Ghosh et al., 2011; Goswami et al., 2006) and in reliable projec-
tions of extremes’ intensity-duration-frequency at regional scales (Kao and Ganguly,
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2011; Kharin et al., 2007) that are crucial for water and flood management. Floods in
particular are less well understood owing to cascading uncertainty from projections of
heavy rainfall to consequences for surface hydrology and impacts on water manage-
ment (Schneider and Kuntz-Duriseti, 2002). Nevertheless, generating credible projec-
tions of climate variables at regional or even local scales remains an important step for5

reliable assessments of hazards and their consequences.
Can improvements in physics and higher-resolution models, increase otherwise in-

adequate precision and enhance the accuracy, of projections for climate-related ex-
tremes? Projections from global models tend to grow more uncertain with increased
spatial and temporal resolution, especially for precipitation, particularly so over the10

tropics (Kao and Ganguly, 2011). The possibility that the current-generation and higher
resolution CMIP5 models will improve projections compared to the previous-generation
phase 3 (CMIP3) models remains to be tested at appropriate scales.

While comparing the performance of GCMs (or the newer generation of earth sys-
tem models), it is important to carefully distinguish between model evaluation versus15

translating model outputs into information relevant for impacts, adaptation, and vulner-
ability (IAV) studies. GCMs are designed to model large-scale atmospheric dynamics,
and from that perspective, recent results suggest general improvement of the ensem-
ble of CMIP5 models compared to CMIP3 (e.g. Ryu and Hayhoe, 2013). However,
any improvement in the internal physics or dynamical behavior of models may not be20

immediately manifested in, for example, model ability to reproduce absolute values
of temperature or precipitation at regional and seasonal scales, or in their extremes.
Nonetheless, IAV studies may occasionally rely on GCM simulations of temperature
and precipitation for future assessments, either directly or indirectly after statistical or
dynamical downscaling. One of the primary functions of downscaling, particularly sta-25

tistical, is to remove GCM-simulated biases in absolute values for IAV applications that
require absolute values to assess impacts. The importance of this step is illustrated
in Fig. 2, which compares a 7-member CMIP5 versus CMIP3 ensemble with National
Center for Environmental Prediction (NCEP-I and NCEP-II) reanalysis temperature and
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Global Precipitation Climatology Project (GPCP) precipitation. Based on a straightfor-
ward comparison, no improvements are apparent either in terms of the multimodel
median projections or in terms of the uncertainty bounds. In fact, CMIP5 almost con-
sistently predicts higher temperatures and precipitation compared to the CMIP3 multi-
model median, but these higher values do not necessarily agree better with the ob-5

servations. These preliminary results (further details in Kumar et al., 2014) may ap-
pear to provide further support to arguments (Hulme et al., 2009) that model improve-
ments alone may not provide immediate answers to stakeholder questions or adapta-
tion needs and additional analyses are clearly required in order to extract information
from GCM simulations directly relevant to and able to be used by IAV assessments.10

This is precisely where Big Data solutions (and in the case of extremes, Big Data
solutions that are ultimately geared towards rare events and small data, or elusive in-
dicators thereof) may provide value. Improvements in internal physics and large-scale
dynamics of GCMs may not directly improve the variables of most immediate interest
to IAV studies. However, data-driven methods may still be able to leverage the improve-15

ments in the larger-scale or internal model variables and yield improved projections for
the variables of interest to IAV. For the data-driven projections to be interpretable and
useful, they need to be guided by physical understanding, where physics may not be
directly captured by GCMs, perhaps even after downscaling.

5 Characterization of climate extremes20

Climate extremes often refer to well-defined weather or climate events that are quan-
tified using measurable physical quantities such as temperature, precipitation, or wind
speed and that are rare (i.e., occurring at the tails of the distribution) relative to cur-
rent climate states (Zwiers et al., 2013). The definition of climate extremes, in general,
varies with the nature of the phenomena and may be based on their impacts. Extremes25

such as hurricanes, tornadoes and floods cause immediate and widespread devasta-
tion, while droughts tend to unfold slowly, are spatially extensive, non-structural and
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have longer-lasting impacts. While phenomena like heat waves under climate change
are better understood than most other climate-related extremes (Coumou and Rahm-
storf, 2012; Field et al., 2012), their very definitions may depend on the impact sector
of interest (Ebi and Meehl, 2007). Figure 2 (top) shows that different definitions of heat
waves can significantly impact the final insights; however each definition remains use-5

ful for its specific context, such as energy demand (Christenson et al., 2006) or public
health (Kovats and Kristie, 2006).

As model-simulated and observational databases, and the importance of inform-
ing adaptation or mitigation policy, continue to grow, descriptive analysis of multiple
definitions of model-projected and observed extremes will at once become a larger10

and more complex task. Surprising insights about cold temperature extremes (Kaspi
and Schneider, 2011; Kodra et al., 2011) are still being discovered from observed and
model-simulated data. Thus, while decreasing frequency of cold extremes has been re-
ported (Coumou and Rahmstorf, 2012), there is still a need for better characterization
and improved mechanistic understanding of their potential persistence in a warming15

world.
Recent advances in attribution of heavy rainfall do not directly translate to improved

information for adaptation (Min et al., 2011; Pall et al., 2011). Thus, intensification of
precipitation extremes under warming, which is partially explained through our concep-
tual process understanding (O’Gorman and Schneider, 2009; Sugiyama et al., 2010),20

is projected relatively credibly in the extra-tropics and at continental to global average
scales (Kao and Ganguly, 2011; Kharin et al., 2007). However, large uncertainties re-
main in estimating the precise degree of change and for specific regions such as the
tropics (Kharin et al., 2007), where diverging insights (Ghosh et al., 2011; Goswami
et al., 2006) have been recently reported owing to differing characterizations of ex-25

tremes. Extreme value theory (EVT) has been used in hydrology (Towler et al., 2010)
or climate (Ghosh et al., 2011; Kao and Ganguly, 2011; Kharin et al., 2007; Min et al.,
2011) to characterize rainfall extremes. Moreover, hydrological extremes are described
by several mutually correlated characteristics; such as peak flow, volume and duration
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(Zhang and Singh, 2007) for floods and severity, duration, intensity and spatial extent
for droughts (Reddy and Ganguli, 2013; Song and Singh, 2010).

Univariate frequency analyses cannot provide accurate assessment of the proba-
bility of occurrence of extremes if the underlying event is characterized by mutually
correlated random variables and may lead to over or under estimation of associated5

risk (Chebana and Ouarda, 2011). Hence, multivariate statistical approaches are often
necessary in order to completely assess risk of hydrological extremes. Further de-
velopments in the statistical theories related to multivariate extremes are needed for
advancing our ability to quantify the complex dependencies of climate extremes more
completely, and with greater certainty (Kuhn et al., 2007; Marty and Blanchet, 2011;10

Mastrandrea et al., 2011; Turkman et al., 2009; Wadsworth and Tawn, 2012). Descrip-
tions of rainfall extremes, whether based on EVT or fixed/dynamic thresholds, need
to characterize changing statistics of storm events (Kao and Ganguly, 2011), droughts
(van Huijgevoort et al., 2012) and be relevant to multiple sectors, including hydraulic
infrastructure design, flood and drought management policy. A recent study of probable15

maximum precipitation (PMP) and climate change (Kunkel et al., 2013) may offer new
ways to blend physics and data-driven insights for precipitation extremes.

Can data-driven methods provide new insights for understanding and characterizing
these extremes? Figure 3 (bottom) presents fully automated and computationally ef-
ficient spatio-temporal characterization of long-term droughts using a Markov random20

field-based approach (Fu et al., 2012). The algorithm was able to detect some of the
major global droughts and proved to be efficient in detecting droughts as compared to
fixed percentile-based approaches for drought detection. The method has been applied
to detect all persistent droughts over the past century (1901–2006). Negative precipi-
tation anomalies of at least 5 yr are considered as significant (hydrologic) droughts and25

shown here for data from 1970 to 1998. The Sahel drought is clearly detected, as are
several others. While this analysis uses a single variable, specifically CRU precipitation
observations, the method is capable of handling multiple variables that contribute to
the characterization of droughts, such as precipitation, soil moisture, and geopotential
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height. In fact, this MRF-based approach, once generalized to multiple variables, may
be viewed as a methodological improvement to the wavelet-based method (Narisma et
al., 2007) for abrupt drought detection in the literature. One of the advantages is the
ability to fully automate the drought detection procedure with a lesser number of pre-
defined parameters, which may be useful for the detection of megadroughts from pa-5

leoclimate data or plausible megadroughts from model projections. The value-addition
of the MRF-based approach, beyond proof-of-concept detection of known droughts,
would be demonstrated when the methods are generalized for multiple variables, and
subsequently used for the evaluation of historical multi-model ensembles as well as
for the generation of future projections with uncertainty from model projections in fore-10

cast mode. On a completely different scale, our recent research (Ganguli and Gan-
guly, 2013) explores severity-duration-frequency curves for observed meteorological
droughts over the continental US during the last few decades through copula-based
approaches.

6 Computational challenges in downscaling15

As long as the spatiotemporal scales relevant to stakeholders and policymakers are
inadequately resolved by global climate models, downscaling will continue to remain
highly relevant to impact analyses. Driven by global climate model outputs, downscal-
ing inherits many of their problems and generates (often massive volumes of) additional
data, thus amplifying the Big Data challenge in terms of both data size and complex-20

ity. Statistical downscaling (Bürger et al., 2012; Mannshardt-Shamseldin et al., 2010;
Robertson et al., 2004) model outputs are relatively computationally inexpensive to
generate, but criticisms (Eden et al., 2012; Schmith, 2008) have focused on model
complexity and the lack of clarity on whether statistical models will perform well far
into the future or on disparate regions. Dynamical downscaling (Pierce et al., 2012;25

Trapp et al., 2010), based on regional climate models, is much more resource-intensive
and is not independent of stationarity assumptions in sub-grid scale parameterizations,
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either. The primary advantages over statistical downscaling are explicit incorporation of
topography and higher-resolution process-models, which are critical given the possible
importance of finer-scale processes (Jung et al., 2012; Diffenbaugh et al., 2005). How-
ever, regional climate models parameterize such processes, often leading to significant
inter-model disagreement, e.g., on precipitation (Palmer et al., 2004).5

Figure 4 illustrates the ability of both statistical (Ghosh, 2010) and dynamical
(Heikkilä et al., 2010) downscaling to provide precise insights compared to the orig-
inal global model results. Dynamical downscaling over the island-nation of Sri Lanka
(Fig. 4, top) suggests, upon visual inspection, that the approach may be able to better
capture the expected influence of topography on heat waves beyond global models,10

particularly since successive resolution-enhancements reveal distinct orographic pat-
terns. On the other hand, the statistical hypothesis test does not necessarily indicate
significant improvement, which suggests the importance of multi-metric explorations
and rigorous evaluation of downscaling results. However, while the value of dynamical
downscaling as a tool for hypothesis testing cannot be denied (despite news articles15

such as Kerr, 2013), the propagation of uncertainty (Sain et al., 2011) remains a chal-
lenge for projections. Over India, while global models suggest a uniform increase in
rainfall extremes trends, the results from statistical downscaling (Fig. 4, bottom) show
evidence for considerable geographical heterogeneity, which in turn agree with the lat-
est findings on spatial variability of extremes (Ghosh et al., 2011).20

7 Complexity of uncertainty assessments

A thorough and comprehensive characterization and quantification of uncertainty,
which may result from imprecise observational data, inadequate models, or intrinsic
climate system variability, is invaluable for stakeholders and policy-makers but difficult
and often even impossible to achieve. Best-estimate projections and corresponding un-25

certainty bounds under climate change are sometimes thought to be better captured
with multimodel ensembles. It is important to evaluate the ability of models to simulate
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historical climate patterns (Pierce et al., 2009), but that alone may not be sufficient for
climate models in view of non-stationarity and long lead time projections. Multimodel
agreement in the future becomes an important metric, with the notion that consensus
implies higher certainty (Overpeck et al., 2011; Weigel et al., 2010). Empirical stud-
ies suggest that averages of output from multiple models outperform individual mod-5

els, this insight being insensitive to which specific models are averaged (Pierce et al.,
2009). However, the value of multimodel averages has been questioned (Knutti, 2010),
particularly for regional assessments (Knutti et al., 2010; Kodra et al., 2012). Recent
attempts at regional assessments include the development of statistical methods that
consider both model performance relative to historical observed data and model en-10

semble agreement (Smith et al., 2009; Ganguly et al., 2013).
One way to improve the uncertainty assessment approaches may be to consider

physical and correlative relations in combination with historical model skills and future
multimodel agreement. For example, in Fig. 5, observations and model simulations
may exhibit regional differences in their adherence to known physical relations. Eval-15

uating the extent to which observed rainfall extremes follow physical relationships like
the Clausius-Clapeyron (CC) may help identify systematic patterns in extreme rainfall
behavior that could be encapsulated in multimodel uncertainty quantification method-
ology. We are not aware of any existing statistical strategy (e.g., along the lines of
Smith et al., 2009) that attempts to explicitly utilize theoretical physical processes in20

addition to historical skills and multimodel agreement. In the top panel of Fig. 5, the ob-
servations and multiple ESMs are compared to the theoretical CC (scaled to compare
with the other curves) over the Eastern United States. An analogous plot is shown
for the southwestern United States in (b); the use of different regions makes appar-
ent the degree to which data (observed and modeled) adheres to conceptual physical25

relations (in this example, the CC). Each point represents a 20 yr mean temperature
(1980–1999, x axis) and an estimated 30 yr return rainfall value (calculated from 1980–
1999, y axis (Kharin and Zwiers, 2007)) for a land-based grid cell. Polynomial spline
regression, a nonparametric smoothing regression approach, is used to fit the rainfall
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return values on mean temperature. This is performed for all models and for NCEP2
reanalysis. Regression model fits are depicted by the colored lines. The theoretical CC
relation is depicted by the red line; a manually calibrated multiplication scaling factor
of 0.00023 (0.00027 for the southwest) was applied for visual purposes (to line the CC
up in the same space as the data) that should not affect the results significantly. Note5

that the level of the CC line has no real meaning beyond this scaling; only the expo-
nential pattern does. Uncertainty bounds for the multimodel ensemble are created with
a resampling scheme combined with the same spline regression.

Besides model-to-model uncertainty, internal model variability due to different
choices of parameters is also a major source of uncertainty but is more difficult to quan-10

tify due to computational constraints. Generating model simulations with multiple sets
of parameters generates (Stainforth et al., 2005) a large number of simulations from
a single global climate model but requires enormous computational resources (Stain-
forth et al., 2002, 2005). Such an approach may generate substantial single model
insights (Stainforth et al., 2005) but is not yet feasible on a massive, multimodel scale.15

Evaluation of multiple models remains an important step in comprehensive uncertainty
assessments, even though structural differences may make inter-model comparisons
difficult and at times even infeasible.

Requirements to provide uncertainty estimates almost invariably magnify the
data challenge, both by generating more model-simulated data (Stainforth et al.,20

2005) and/or by requiring more data-intensive approaches. Even relatively easily-
parallelizable approaches like the bootstrap method, which has been used with EVT
(Ghosh et al., 2011; Kao and Ganguly, 2011; Kharin et al., 2007) to characterize uncer-
tainties in return level estimates of climate variables, can benefit significantly from par-
allel processing. The recently developed method of “bag of little bootstraps” (Kleiner et25

al., 2012), claims to significantly improved the time-complexity of bootstrap method for
large datasets with theoretical guarantees of correctness of uncertainty estimates. The
adaptation of these techniques in space and time for observed and model-simulated
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climate data across multimodel and multiple initial condition runs and with different
statistical estimation approached may represent major challenges.

8 Enhanced understanding and predictions

Climate extremes, such as heavy rainfall or tropical cyclones, are known to depend
on other climate variables (including mean states, local or regional variables, as well5

as large-scale effects such as oceanic indices) that may be better simulated by mod-
els, such as land and sea surface temperatures. Developments in correlative analysis
(Reshef et al., 2011; Khan et al., 2007), extended to handle correlated data at multiple
spatial and temporal scales, may help quantify conceptual understanding and possibly
even discover new dependencies (Khan et al., 2006). Challenges in analyses of histor-10

ical extreme events such as tornado and hurricane data involve attributing spatial and
temporal scales of their behavior to climate change versus natural variability (Emanuel
et al., 2008; Webster et al., 2005), as well as to data collection issues for tornadoes and
cyclones (Brooks and Doswell, 2001; Emanuel, 2005) and discontinuity of operational
definitions for tornadoes (Doswell et al., 2009). Innovative data-driven approaches that15

consider these complexities are needed to build understanding of the physical behav-
ior and drivers of tornadoes and hurricanes because physics-based modeling for these
types of processes is still in early stages (Emanuel et al., 2008; Trapp et al., 2010).

New process understanding or novel insights from mining climate data may help
enhance projections and ultimately reduce uncertainty. Although relatively coarse-20

resolution global climate models are not able to directly simulate tropical cyclones,
they have been used to develop aggregate statistics of hurricanes (Emanuel et al.,
2008) under climate change. In the same manner, temperature and updraft velocity
profiles have been used to constrain or enhance multimodel projections of precipi-
tation extremes (Knutson et al., 2010; Wilhite and Glantz, 1985). These approaches25

point to the information content in auxiliary variables relevant for climate extremes, and
with appropriate adaptations, may lead to a virtuous cycle where data-driven insights
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and process understanding mutually inform, complement, and improve each other. Re-
cently, even tornado occurrences have been associated with monthly environmental
parameters (Tippett et al., 2012), though not necessarily in a climate change context.

Linear dimensionality reduction has been used (Mishra et al., 2012) for advancing
understanding of climate processes like monsoons, which are known to be important5

for hydrometeorological extremes. The relationships among large and high dimensional
climate data can improve understanding of dominant processes and lead to enhanced
projections through predictive modeling. The IPCC-SREX indicates that crucial pro-
cesses that may influence climate extremes, such as El Niño or other climate oscilla-
tors and monsoons, are not well understood. Inferences from surrogate data may yield10

new insights on extremes processes: the use of ocean salinity data to understand the
intensification of climate extremes (Durack et al., 2012) provides an example using a
proxy data set for precipitation. Figure 6 (top) provides an example where new data
mining methods (Kawale et al., 2011, 2013) for dipole discovery were used to extract
information about climate oscillators that may be useful for model evaluation.15

An intelligent combination of process understanding with data mining methods may
yield new explainable predictive insights beyond statistical downscaling. In fact, the
premise of statistical downscaling (discussed earlier), where one overall approach is
linear dimensionality reduction followed by nonlinear regression (Ghosh, 2010), is that
lower-resolution model outputs have information content about higher-resolution vari-20

ables. We propose taking this one step further. Variables that are more reliably pro-
jected by climate models may be used not only to improve our process understanding,
but also to enhance projections of the climate extremes of interest. For enhanced cli-
mate projections, especially given the importance of spatiotemporal neighborhoods,
prevailing winds, intra-decadal to multi-decadal climate oscillators, and teleconnec-25

tions, the number of potential explanatory variables may far exceed the number of
observations available, which creates problems for classic regression.

Popular dimensionality reduction approaches like empirical orthogonal functions
(Hannachi et al., 2007) summarize complex data succinctly but may not necessarily
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do so in a way that maximizes information useful for predicting a specific variable.
Sparse regression (Negahban and Wainwright, 2011; Negahban et al., 2012) repre-
sents promising alternatives under these situations. Sparse regressions based on con-
straining the L1-norm of the regression coefficients became popular due to their abil-
ity to handle high dimensional data unlike the regular regressions, which suffer from5

overfitting and model identifiability issues especially when sample size is small. They
are often the method of choice in many fields of science and engineering for simul-
taneously selecting covariates and fitting parsimonious linear models that are better
generalizable and easily interpretable. Sparse regularization methods have just be-
gun to be applied to statistical downscaling (Ebtehaj et al., 2012; Phatak et al., 2011).10

However, this method can also be applied for improved understanding of the complex
dependence structure between climate variables, especially in a high-dimensional set-
ting (Chatterjee et al., 2012; Das et al., 2012, 2013). High-performance computational
challenges related to this general approach represent an active area of research.

Networks that connect nodes defined as spatial grid-cells (Steinhaeuser et al.,15

2011b; Donges et al., 2013) or climate oscillators (Donges et al., 2009a), often known
as “climate networks”, may be useful to represent climate dependencies and develop
process understanding (Donges et al., 2009a, b). Figure 6 (bottom) provides an exam-
ple of new data-driven predictive approaches (Chatterjee et al., 2012) that appear well-
suited for high-dimensional and geographically-distributed climate data with complex20

dependence structures. Network-based graphical models have been used to discover
causality among different modes of climate variability (Ebert-Uphoff and Deng, 2012).
New methods in nonlinear data sciences, from complex networks (Steinhaeuser et al.,
2011a) to multifractals (García-Marín et al., 2013; Muzy et al., 2006), have demon-
strated initial promise for better description and predictive insights on climate-related25

extremes, such as extreme monsoonal rainfall over South Asia (Malik et al., 2011).
Certain methods may eventually be applicable in a climate change detection context,
potentially making similar innovations useful for not only long horizon prediction and
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uncertainty reduction but also for relatively abrupt change and disturbance analysis or
even for early warning systems.

9 Summary

One of the largest scientific gaps in climate change studies is the inability to develop
credible projections of extremes with the degree of precision required for adaptation5

decisions and policy. The dire consequences of climate-related extremes, even in de-
veloped economies (Gall et al., 2011), may call for a range of well-informed adap-
tation strategies from low-regret (Wilby and Keenan, 2012) to transformative (Kates
et al., 2012). Improving regional projections (e.g., through variable selection or statis-
tical downscaling) and characterizing natural variability (e.g., irreducible uncertainty10

at decadal scales: Deser et al., 2012) are necessary for informing adaptation at
stakeholder-relevant scales and planning horizons. As climate-related data approaches
the scale of hundreds of petabytes (Overpeck et al., 2011), and climate data mining re-
search continues to improve (Smyth et al., 1999; Robertson et al., 2004, 2006; Khan
et al., 2006; Camargo et al., 2007a, b; Gaffney et al., 2007), new opportunities will15

emerge (e.g., Monteleoni et al., 2013; Ganguly et al., 2013). Data-driven methods are
complementary to, and indeed conditioned on, physics-based models; however, they
need to be tailored to the complexity of climate data and processes. The methods
may be motivated from often disparate data-science disciplines such as statistics and
econometrics, machine learning and data mining in computer science, nonlinear dy-20

namics in physics and signal processing in engineering. The blend of physics and data-
driven insights has conceptual similarities with data assimilation methods (e.g., Gerber
and Joos, 2013). However, data assimilation methods are ultimately constrained by
the physics encoded within climate models, and updates to parameters or state vari-
ables cannot be made in the future where no observations exist. The physics-guided25

data mining discussed here refers, for example, physics-motivated decomposition into
component processes (e.g., Ganguly and Bras, 2003, offers an example in weather
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forecasting), physically motivated variable selection in statistical downscaling (e.g., cer-
tain analog methods: Zorita and Von Storch, 1998), or physics-based model selection
(Fasullo and Trenberth, 2012) and physically-guided climate networks (Donges et al.,
2009b; Steinhaeuser and Tsonis, 2013). The climate extremes exemplars discussed
here are a collection of outstanding challenges where data mining already does or5

can play an innovative new role; various scientific communities will have to decide
which specific directions to pursue guided by a combination of stakeholder priorities
and which problems they are best positioned to address. Once developed and refined,
physics-guided data mining methods are well positioned to produce new scientific un-
derstanding and credible projections of climate extremes leading to more informed10

adaptation and policy.
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Fig. 1. Frequency and severity of hydrometeorological hazards, indicated as damages in US
dollars (top) and annual fatalities (bottom), along with their uncertainties in our current un-
derstanding in a climate change context. Damage and fatality data are taken from the UN
Office for Disaster Risk Reduction (UNISDR) at PreventionWeb (http://www.preventionweb.net/
english/hazards/) averaged over 1980–2008. The uncertainties are represented by the size of
the bubbles with larger circles indicative of greater uncertainty and are derived from the IPCC
confidence and likelihood estimates (Field et al., 2012).
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Fig. 2. Global climate models are designed to simulate the large-scale circulation of the atmo-
sphere and its response to external forcing, and needs to be evaluated from that perspective.
However, adaptation, impacts and vulnerability (IAV) studies occasionally use GCM model sim-
ulations directly, or after statistical and dynamical downscaling. Model-based assessments in
the future need to ultimately rely on GCM projections. Nevertheless, relatively naïve utilization
of GCM projections for IAV studies may yield non-informative or even misleading conclusions.
This is illustrated though comparisons between the CMIP3 and CMIP5 climate model simula-
tions at continental and global scales in terms of average temperature and precipitation. The
two GCM-ensembles are evaluated against the observation-based NCEP/NCAR (NCEP-1) and
NCEP/DOE (NCEP-2) reanalysis data. For precipitation, the Global Precipitation Climatology
Project (GPCP) observational data is used in addition. Aggregate comparisons do not appear
to suggest significant improvements of CMIP5 over CMIP3. While this does not necessarily
imply a lack of improvement in CMIP5 over CMIP3 in terms of large-scale dynamics, this does
suggest the need for caution when GCMs (with or without downcaling) need to be used for IAV
studies.
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Fig. 3. Characterization of extremes from big climate data. (Top) Characterization of ex-
tremes requires a summarization of the statistical properties of climate-related observations
and model-simulations. A thorough assessment of extremes from massive climate data may
be especially challenging because the definitions of extremes definitions and indices may de-
pend on stakeholder needs. Here we present three different choices: an energy-consumption
related metric called Cooling Degree Days or CDD (left); a heatwave intensity index (Gan-
guly et al., 2009b) thought to be relevant for human mortality defined as consecutive night-
time minima events (middle); an index grounded in the statistical theory of extreme values
(Kharin et al., 2007). The substantial regional differences suggest the differences in the na-
ture of the insights. (Bottom) Novel data-driven approaches can help detect climate-related
extremes, particularly ones like droughts that are especially difficult to characterize43−44. Our
analysis (bottom left) suggests that Markov Random Field (MRF) based approaches may im-
prove the detection process but traditional implementations may not scale to large data. We
have developed a new, computationally efficient optimization solver to implement the MRF (Fu
et al., 2012). As a proof-of-concept, here we show how the new method detects persistent
and significant droughts over space and time. We used three popular methods (bottom right)
to solve the same MRF inference. Our algorithm for characterizing droughts, ‘KL-ADM’, is ap-
proximately one order of magnitude faster than an existing popular routine called ‘Proximal’
(dark red) and much faster than any commercially available software (e.g., IBM ILOG CPLEX
Optimizer, http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/). The first
(second) dataset (x axis) is a simulated dataset with 100 000 (200 000) variables and 293 500
(586 000) two-way relationships among them, where each variable can take on 3 (4) possi-
ble values. The third dataset is the Climate Research Unit precipitation dataset, which has
7 146 520 variables (i.e., points in space) and each can take on 2 possible values (drought or
no drought). This example clearly shows a significant speedup in computation using KL-ADM,
especially with four parallel processors.
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Fig. 4. Precise projections with downscaling generate bigger data. (Top) An example of dy-
namical downscaling that shows changes in heatwave intensity over Sri Lanka from 2006–
2015 to 2056–2065 projected by the Community Climate System Model Version 4 (CCSM4)
at 100 km spatial resolution and dynamically downscaled by the Weather Research and Fore-
casting (WRF) model at three successively enhanced spatial resolutions: 36, 12, and 4 km.
Dynamical downscaling yields significant computational challenges. A goodness-of-fit compar-
ison, via the Kolmogorov-Smirnov (KS) tests, does not yield substantial evidence for differences
in spatial distributions of model runs, which is probably owing to small sample sizes for the 100
and 36 km resolution data. However, the effects of topography in the mid-southern Sri Lanka
appear more prominent at higher resolutions. The sheer size of the newly generated dynam-
ically downscaled simulations, as well as the problem complexity, further intensifies the need
for Big Data solutions. (Bottom) Statistical downscaling is complementary to dynamical down-
scaling and usually requires significantly less computational resources. Here we perform sta-
tistical downscaling by relating fine-resolution rainfall observations with a large set of climate
model-simulated variables and using the relation first to validate on unseen data and then for
precise projections in the future. The results show how an ensemble of five runs of the CCCMA
CGCM3.1 T47 global climate model is validated for 20th century simulations (left), and then ap-
plied to the SRES A2 scenario for 2070–2099 (right). Geographical heterogeneity in the trends
of rainfall extremes over India, shown in a recent observation-based study, is suggested after
downscaling but not directly from the global model runs (Ghosh et al., 2011).
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Fig. 5. Uncertainty quantification adds to the Big Data challenge. Multimodel ensembles have
been used to quantify uncertainty in the structural representation of climate physics; their per-
formance has been evaluated by investigating skills in reproducing historical behavior (skills)
and multimodel agreement (convergence) in the future. Here we investigate the uncertainty in
precipitation extremes and explore whether physically based relations, like the temperature-
dependence of precipitation extremes through the saturation vapor pressure (known as the
Clausius-Clapeyron, or CC, relation), may help further inform uncertainty assessments and
skill-based model selection. For the southwestern and southeastern United States, a 7-member
CMIP3 model ensemble is used for the analysis, with NCEP2 used as a baseline model and the
theoretical CC curve shown for comparison. Every point from each model represents a 20 yr
mean temperature (1980–1999) on the x axis and a 30 yr rainfall (1980–1999, y axis) with
nonlinear regressions fit to each dataset and uncertainty bounds computed using a bootstrap-
based resampling procedure. The value of using the multivariate physically based CC relation
in uncertainty quantification is suggested, particularly for extremes (specifically, heavy rain-
fall) where covariate relations (specifically, temperature-dependence) are known from process
physics (e.g., Clausius-Clapeyron).
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Fig. 6. Predictive insights from observations and model simulations. (Top) Dipoles were de-
tected using sea level pressure (SLP) from NCEP2 reanalysis and the GFDL CM2.1 global
climate model from CMIP3 (from left to right, respectively) from the year 1979–2000. Dipoles
are a class of teleconnections, or long-range dependence in space, that represent a persistent
and large-scale temporal negative correlation in a given climate variable between two neighbor-
ing or distant geographical locations. The dipoles shown here are generated using the shared
reciprocal nearest neighbors (SRNN) algorithm graphical approach (Kawale et al., 2013). The
edges of the graph, shown in the figure, represent dipole connections between two regions,
while the color in the background shows the SRNN density, where darker colors signify regions
of higher connectivity. This class of methods may be useful for systematically detecting, refining
existing, or even identifying new, climate teleconnections or oscillations, as well as for model
evaluation. (Bottom) While critical for statistical downscaling and relating ocean-based indices
to regional land climatology, regression problems in climate may be particularly difficult to solve
reliably, owing to issues like high-dimensionality (large input variables compared to the num-
ber of calibration or training data), proximity-based spatial correlations, and teleconnections.
Here we use multiple ocean variables (as predictors or covariates) to predict changes in land
precipitation for multiple regions using NCEP1 reanalysis. The results indicate that a new ap-
proach, called the Sparse Group Lasso (SGL: Chatterjee et al., 2012), outperforms ordinary
least squares and LASSO regressions (Tibshirani, 2011) as per both error-based predictive
accuracy and model parsimony (i.e., the number of covariates selected for prediction). Model
parsimony refers to simpler models with lesser number of parameters, which in turn tend to
generalize better than more complex models, especially if predictive accuracy on training data
remains identical or also gets lower. Where climate extremes of interest (e.g., hurricanes or
rainfall extremes) are projected less reliably but relate to variables (i.e., potential covariates)
that are better projected (e.g., oceanic or land temperature), methods such as the SGL and
future innovations may enhance projections beyond model-simulations alone. We note that the
ordinary least squares (OLS) approach serves only as a very naïve baseline for this analysis. In
the OLS approach shown here, the number of covariates selected is simply all covariates con-
sidered; OLS intrinsically assigns non-zero coefficients to all covariates. With so many covari-
ates, almost certainly the OLS model will have nonsensical non-zero parameters due to issues
like multi-collinearity. We acknowledge the fact that procedures like stepwise least squares may
improve on the naïve OLS reduce shown here by reducing the dimensionality of the problem.
However, forward versus backward versus mixed stepwise procedures have their own set of
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problems related to multi-collinearity and changes in coefficients with addition or removal of
covariates, among others. Still, we present the naïve all-covariate OLS purely as a baseline for
comparison without implying that it is or should be used in high-dimensional problems of this
nature.
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