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Abstract

In the deep part of the Sea of Marmara (Turkey), the sedimentation developing upon the
North Anatolian Fault is strongly influenced by the associated seismic activity. Specific
layers (homogenites-turbidites), representing individual sedimentary events, have been
characterized along three giant piston cores retrieved from Çinarcik and Central (or5

Orta) basins. Analyzed sediments represent the last 12 to 17 kyr BP. For a 2 kyr-lasting
interval, 11 events could be precisely correlated on both sides of the Central Basin’s
southern scarp. For each of them, based on the specific depositional process, the
thickness difference between the two sites was considered as a direct estimation of
the vertical component of a coeval co-seismic offset. The homogenite (upper) term10

accounts for the major part of the thickness difference. The 6 most significant values
range from 36 cm to 144 cm and are likely representing dominantly normal throws, with
estimated paleomagnitudes (Mw) ranging from 5.9 to 6.6.

1 Introduction

Since several decades, sedimentary archives, either marine or lacustrine, have been15

explored as potential paleoseismic records, beside previously well-developed onland
approaches (in McCalpin, 2009). For the subaqueous records, two major groups of
effects can be detected and analyzed: (i) in situ post-depositional disturbances (e.g.:
Marco and Agnon, 1995; Ken-Tor et al., 2001; Rodriguez-Pascua et al., 2002, 2003), (ii)
gravity-driven reworking and re-settling of large masses of unconsolidated sediments20

(e.g.: Adams, 1990; Strasser et al., 2006).
Two major questions arise for both groups: (1) how to ensure the earthquake-

triggering, (2) how to identify the responsible active structure(s). For in situ distur-
bances, the first problem is generally solved; in particular, it benefits from analogical
and/or numerical modelling (e.g. Moretti et al., 1999; Wetzler et al., 2010). For redepo-25

sitional processes – which are envisaged in the present work – several recent catas-
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trophic events could be suveyed shortly after their occurrence (Thunell et al., 1999;
McHugh et al., 2011; Lorenzoni et al., 2012); the results reinforced the earthquake-
induced interpretation proposed for some “homogenite-type” layers (Chapron et al.,
1999; Beck et al., 2007).

For historical and older events, the seismic origin of a specific layer can be estab-5

lished:

– directly, using intrinsic characteristics (texture, origin of components, overall ge-
ometry, etc., (see references in Beck, 2009, and Beck et al., 2007);

– indirectly, (i) on the basis of correlations with reported seismic events (for historical
seismicity) (e.g. Siegenthaler et al., 1987; Piper et al., 1992; Chapron et al., 1999;10

Beck et al., 2012); (ii) when detecting the same paleo-event in a large area in-
dependantly from local setting (e.g. variable slope dip). This second approach is
especially used for deep structures, as subduction (e.g.: Gracia et al., 2010; Moer-
naut, 2011; Pouderoux et al., 2012), but, also in some cases, for surface-reaching
major faults (e.g. Goldfinger et al., 2007);15

– combining both types of arguments.

Direct relationships between an active structure and earthquake-induced sedimentary
events are investigated for active faults reaching a sediment/water interface (sea- or
lake-bottom), through high resolution imagery or/and coring. This favourable setting re-
cently permitted detailed analyses of fault activity (offsets, slip rates) through adjacent20

sedimentation (Carrillo et al., 2006, 2008; Bull et al., 2006; Barnes and Pondard, 2010;
Beck et al., 2012). The here-presented work was dedicated to one of these cases: the
deep part of the Sea of Marmara (northwestern Turkey) developed along the North-
Anatolian Fault.

As the sedimentological tools and approaches we used have been previously pub-25

lished (Sari and Çağatay, 2006; Beck et al., 2007, 2012; Uçarkuş, 2010; Çağatay et al.,
2012; Drab et al., 2012; Eriş et al., 2012; Campos et al., 2013) only results (data and
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interpretations) implying paleoseismological aspects will be envisaged here. Detailed
sedimentological aspects may be consulted in the above-mentioned publications.

2 Tectonic context and data acquisition

Being the gateway between the Black Sea and the Aegean Sea, with narrow shallow
connections (Fig. 1), the Sea of Marmara has become the focus of paleoenvironmen-5

tal investigations. In particular, Late Quaternary climatic cycles, and especially asso-
ciated sea level changes, let a strong sedimentary imprint, in shallow parts as well
as in deep basins (Çağatay et al., 2000; Major et al., 2006; Vidal et al., 2010; etc.).
Different hypothesis (including catastrophic flooding) have been proposed for the last
“re-connection” of the three realms through Bosphorus and Dardanelles (Çanakkale10

Straits) sills (Ryan et al., 1997, 1999; Aksu et al., 1999; Eriş et al., 2007; etc.). For
our purpose, the age of the last non marine-to-marine shift of the Sea of Marmara is
a key point, both for the chronological frame of recent seismo-tectonic activity and for
the change of volume, composition, and behaviour of re-mobilized sediments (impact
of water density and circulation).15

2.1 Structural setting and recent seismic activity

The whole circum-Mediterranean areas represent complex and active plate boundaries
where subduction and faulting are responsible for high seismic hazards (in Ambraseys,
2009). Among microplates located between the two major Eurasian and African plates,
the Anatolian plate (Fig. 1 insert; McClusky et al., 2000; Flerit et al., 2003; Reilinger20

et al., 2006) is highly investigated as its boundaries have produced catastrophic earth-
quakes and represent a high permanent seismic risk. More precisely, the northern
limit of the Anatolian Plate corresponds to the – right lateral strike slip – North Anato-
lian Fault (N.A.F. in the following), which northern branch follows the Sea of Marmara
from the Izmit Gulf (East) to the Aegean Sea (West) (Barka and Kadinsky-Cade, 1988;25
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Armijo et al., 2002; Polonia et al., 2004; McNeill et al., 2004; Gasperini et al., 2011;
etc.). Beside the dominant strike slip displacement, the importance of normal fault-
ing and fast subsidence has been underlined, especially for the Central and Çinarcik
Basins (Cormier et al., 2006; Carton et al., 2007).

The migration of historical catastrophic ruptures along the N.A.F. has been inten-5

sively investigated aiming to understand past and present stress distribution, and to
improve seismic risk assessment (Toksöz et al., 1979; Ambraseys and Jackson, 2000;
Ambraseys, 2002; Hubert-Ferrari et al., 2002; Altunel et al., 2004; Aksoy et al., 2010;
Fraser et al., 2011; Uçarkuş et al., 2011; Meghraoui et al., 2012; etc.). In particular,
two destructive ruptured sections have been surveyed (offset and length) respectively10

West and East of the Sea of Marmara: (1) the Mw 7.4 1912 Ganos event, (2) the Mw 7.4
1999 Izmit event. As the deep basins of the Sea of Marmara are bounded or crosscut
by the N.A.F. (Fig. 1), several offshore surveys have been dedicated to analyze its sub-
merged section. Morphological and sedimentary impacts of major recent earthquakes
have been searched using: seismic reflection with different resolutions and penetra-15

tions, multibeam and side scan sonar, different types of coring, and remote operating
vehicles (R.O.V.) (Armijo et al., 2005). The different results concern: (1) deep fluids ex-
plusion related to seismo-tectonic activity (Géli et al., 2008; Tary et al., 2012; Burnard
et al., 2012; etc.), (2) mass wasting and creep (Zitter et al., 2012; Shillington et al.,
2012; (3) deep sedimentation specificities (McHugh et al., 2006; Sari and Çağatay,20

2006; Beck et al., 2007; Çağatay et al., 2012; Drab et al., 2012); (4) detection and
dating of historical co-seismic scarps (Armijo et al., 2005; Uçarkuş, 2010). Historical
tsunamis reports and modelling (Altinok et al., 2011; Hébert et al., 2005) complete
these different data, taking into account the fact that these phenomena are not system-
atically associated to earthquakes (Hornbach et al., 2010). Small size lacustrine basins25

aligned along the N.A.F. East of Izmit have also been studied for paleosesimicity (Aşar,
2013).

The Sea of Marmara, and especially its deep basins, represents a favorable setting
for the search of past seismic activity, and, by mean, an essential data source for re-
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gional sesmic hazards estimation (cf. Armijo et al., 2005). In the following, we will focus
on the Çinarcik and Central basins’ recent sedimentary fills, which we studied aiming:
(1) to reconstruct a succession of earthquake-induced sedimentery “events”, and, (2)
to use part of this succession to analyze the activity of the fault zone corresponding to
the southern limit of the “inner” Central Basin (as named by Uçarkuş, 2010).5

2.2 Data acquisition and processing

The here-used data were collected during two cruises: (1) the MARMACORE sur-
vey (on R/V Marion-Dufresne), (2) the MARMARASCARPS survey (on R/V Atalante).
Three types of cores were retrieved: giant gravity piston cores (CALYPSO device),
classical Kullenberg-type cores, and very short cores (35 cm) visually picked using the10

VICTOR R.O.V.. In parallel, high resolution (3.5 kHz) seismic profiles were acquired,
and a complete survey with the VICTOR R.O.V. was dedicated to a high precision
multibeam bathymetric survey of different deep scarps (Armijo et al., 2005; Uçarkuş,
2010).The second and third types of cores have been analyzed and yielded paleoseis-
mic information (Uçarkuş, 2010; Drab et al., 2012). A preliminary analysis of 7 Calypso15

cores (with length ranging from 22 to 37 m) and 3.5 kHz imagery has been achieved
(Beck et al., 2007). 3 of them (MD01-2425 in Çinarcik Basin, MD01-2429 and MD01-
2431 in Central Basin, location on Fig. 1) were chosen for later detailed laboratory
sedimentological analyses on split cores (Eriş et al., 2012, and this work):

– sediment composition: microscopic observations, Carbon and carbonates con-20

tents (LOI) XRF profiles in selected portions (AVAATECH instrument); bulk mag-
netic content (BARTINGTON contact sensor with 5 mm measurement interval);

– layering and texture (grain array):

– X-Ray pictures (SCOPIX device, Migeon et al., 1998)

– detailed grain size analysis (MALVERN Mastersizer, 2000): base-to-top paths25

on binary diagrams for turbidites/homogenites layers (in Beck, 2009; Eriş
4075
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et al., 2012); particle shape analysis for silt-clay fraction (SYSMEX FPIA-
2100 device);

– Anisotropy of Magnetic Susceptibility profiles (2 cm interval) on selected por-
tions (Campos et al., 2013), completed with Anhysteretic Remanent Magneti-
zation (ARM) and Isothermal Remanent Magnetization (IRM) (AGICO MFK1-5

FA Kappabridge, SQUID and 2G 760R systems).

The chronology is based on AMS 14C calibrated ages: previously published measure-
ments performed in Woods Hole Oceanographic Institution (NOSAMS facility) (in Beck
et al., 2007), and a set of new mesurements performed at CEA-Saclay (CNRS-INSU
ARTEMIS facility).10

3 Recent sedimentation in the Çinarcick and Central basins of the Sea of
Marmara

Cores MD01-2425, -2429, and -2431 (location on Fig. 1) were respectively retrieved
at 1215 m, 1230 m, and 1170 m depths, with 31.30 m, 37.30 m, and 26.40 m respective
lengths. They respectively represent about 17 kyr, 14 kyr, and 18 kyr BP of continuous15

deposition. The compositions, layering-types, and the general chronostratigraphy, ap-
pear very similar between the three cores, thus we will summarize the results obtained
for Core MD01-2425 as a reference. They confirm and complete the investigations
previously achieved by Eriş et al. (2012).

3.1 The post-LGM succession in the Çinarcick basin (Core MD01-2425)20

Figure 2 summarizes the succession within which, especially in the lower (non marine)
part, numerous turbidites, often associated to an overlying homogenite, are interca-
lated. For this reason, we will describe separately these instantaneous sedimentary
“events” and the continuous (“back ground”) slow sedimentation. A neat subdivision
into two successions appears (see also Eriş et al., 2012): (1) a lower part with a mean25
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high sedimentation rate (about 5.4 mm yr−1) due to abundant intercalations of coarser
instantaneous terrigenous inputs; (2) an upper part with lower mean sedimentation rate
(1.3 mm yr−1) and few coarser intercalations. The limit (discussed hereafter) roughly
corresponds to the transition from non marine (only connection with the Black Sea) to
marine (connection with Aegean Sea and Black Sea) setting. The whole core corre-5

sponds to the Late Glacial–Holocene period.

3.1.1 “Back ground” sedimentation

It is represented in the whole core by a hemipelagic silty–clayey mud. Although the
word “hemipelagite” should be restricted to marine/oceanic deposits, we also use it
for the non marine succession as, in both cases, it is a mixture of clayey-silty terrige-10

nous fraction (clay minerals, quartz, plagioclase, amphibole, pyroxene, fresh micas,
opaques) and planctonic biogenic or bio-induced particles (carbonate and silica: cal-
careous nanoplankton, Diatoms). Additionnal authigenic particles are locally abundant
(sulphides, calcite, aragonite, Mn oxydes).

The bulk carbonate content ranges from 8 to 10 % in the upper marine part; it reaches15

16 % at the limit non marine/marine. Organic Matter (weight % dried sediment) ranges
from 4 to 6 % in lower part, and 7 to 14 % in the upper part. The highest values charac-
terize the 1380–980 cm so-called “sapropelic” interval. This O.M. enrichment has been
previously reported in the different basins of the Sea of Marmara, and in the shallower
zone between Tekirdağ and Central basins (Çağatay et al., 2000; Reichel and Hal-20

bach, 2007; Beck et al., 2007; Vidal et al., 2010). The different proposed ages are in
agreement and a 11-to-7.5 kyr BP period (cal 14C without reservoir correction) can be
attributed to this particular episode.

We include into the “background” sediments numerous silty–sandy laminated inter-
vals present in the upper marine part. They are 1 to 3 cm thick and display millimetric25

parallel planar bedding, involving subtle changes in grain size (up to very fine sand)
and mineralogy of detrital components. They have been observed in the three basins
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(Tekirdağ, Central, Çinarcik) with same characteristics and occurrence frequency (Beck
et al., 2007). We relate these levels to in situ slight reworking by episodic increase of
bottom current velocities. A minor part of these intervals (see hereafter) show slow an-
gle micropragradation (flaser bedding type) and are associated to homogenites, thus
included into instantaneous gravity reworking events.5

3.1.2 Homogenites+ turbidites (HmTu) occurrences

Detailed analyses and characterizations of homogenites and their association with tur-
bidites (here labelled HmTu) has been previously published (references in Chapron
et al., 1999; Beck et al., 2007; Campos et al., 2013), and their use as paleo-earthquake
indicator underlined. They were initially called “seismoturbidites” in Eriş et al. (2012).10

On split core surface and X-ray pictures, a series of such layers have been visually
identified (Fig. 2) mostly in non marine lower part of the core. With up to 1 m thickness,
they consist of: (1) a basal coarse layer with overall normal graded bedding, sometimes
subdivided into second order graded episodes (similar to classical turbidite lower term),
(2) strongly homogenous fine-grained (2 to 8 µm mean grain size) interval, lacking in-15

ternal variation, and displaying an anomalously high magnetic foliation. As the content
and particle shapes of the homogene upper term are identical to what is observed in
the hemipelagic mud, the AMS contrast is attributed to a particular grain array (Cam-
pos et al., 2013) and, by mean, to a specific settling process. The sharp break between
the two terms is often preceeded by a thin interval with flaser bedding-type layering in-20

dicating to-and-fro (oscillatory) current, and/or by a specific grain-size evolution. We
interpreted this transitional interval as a consequence of oscillation of the whole water
mass (seiche effect, reflected tsunami), thus an effect of earthquake and/or massive
subaqueous landslide.

In the upper marine part of the succession (Fig. 2), these HmTu “events” are scarce25

and thinner; they only display a discrete coarser layer and homogene mud with same
texture as in the non marine HmTu events. Some classical turbidites were also found
in Core MD01-2425. We discarded them in the following, as we could not ensure their
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earthquake triggering using our criteria; this choice probably minimizes the total num-
ber of inferred recorded paleo-earthquakes. The contrast between the two parts of the
succession (roughly between Late Glacial and Holocene) is a matter of debate (in Beck
et al., 2007). To explain the abundance of terrigenous arrivals in the Late Glacial, we
may envisage: either higher storage of sediments in subaqueous deltas and subse-5

quent higher potential for gravity reworking (climatic influence), or more frequent and
powerfull earthquakes (tectonic influence)? A change in water density vertical profile
and in circulation may also account for the distribution of bedload and suspended load.
A similar problem has been underlined for the post-LGM fill of large peri-alpine lakes
(Beck et al., 1996).10

3.1.3 The non marine to marine transition – age and implications

Due to its importance for the study of the last climatic cycle, the hydrologic evolution
of the Sea of Marmara has been intensively surveyed through sedimentation. Biolog-
ical, chemical, mineralogical, and isotopic proxies, have been analyzed to detect the
respective influence of the Black Sea and the Aegean Sea since the Last Glacial Maxi-15

mum (MIS 2) depending on their surface level (Çağatay et al., 2000; Major et al., 2006;
Reichel and Halbach, 2007; Eriş et al., 2007; Vidal et al., 2010). The impact of these
variations has also been investigated in shallow parts (Çağatay et al., 2003).

Based on detailed data from cores taken in Central Basin and between Tekirdağ and
Central basins, Reichel and Halbach (2007) proposed a modelling of fresh water and20

marine water mixing. Their results fit with their detection of a calcite peak (30 %) related
to authigenic precipitation and interpreted as the result of a first mixing of bottom anoxic
fresh water with surface oxic marine water. According to their radiocarbon dating, this
changed occurred at 13 cal kyr BP. Vidal et al. (2010) concluded to a slightly different
scenario: beginning of Aegean influence at 14.7 kyr cal BP and progressive increase of25

the mixing, lasting 2 kyr, and followed at 12.8 kyr cal BP by an increased of terrigenous
continental organic material. They relate the latter to the beginning of Younger Dryas.
The calcite maximum may correspond to the end of mixing process. The end of signif-
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icant Black Sea input at 11.5 kyr cal BP (Vidal et al., 2010) may correspond to the end
of the calcite-rich episode. Differences may be due to data sets respectively coming
from a deep basin floor (Vidal et al., 2010) and from a shallower setting between two
basins (Reichel and Halbach, 2007).

In the here-studied cores, X-ray pictures (Fig. 3 insert) permit to identify a 2 to 5 cm-5

thick, conspicuous layer of highly bioturbated mud, overlain by about 1 cm of laminated
silty mud (parallel planar bedding). It is marked by an increase of fine-grained plant de-
bris, and an abrupt change in magnetic content with respect to hemipelagic intervals. It
also corresponds to the last occurrence of Diatoms frustules fragments. A XRF chem-
ical profile (core scanning) performed across this layer – from 40 cm below to 100 cm10

above – did not display any abrupt change but rather the beginning of a very progres-
sive increase of Br, Mo, and S, considered as diagnostic for more marine environment.
According to our measurements, Carbonate content reaches a maximum just below
this level (named “reference layer” in the following) and sharply decreases above.

Combining all published results (and our 14C results) we consider our “reference15

layer”as the Y.D. base and we will use, for the paleo-seismic record discussed hereafter,
a 12.8 cal kyr BP age.

3.2 Correlations between Çinarcik and Central Basins and inside Central Basin

In order to extract a paleoseismic record through HmTu events, we checked: (1) a re-
gional correlation between Central and Çinarcik basins (MD01-2425, -2429, and -2431;20

see also Beck et al., 2007; Eriş et al., 2012); (2) a more localized correlation on both
sides of an active scarp in Central Basin (Fig. 4). The catastrophic pre-Late Glacial
event (pLGH on Fig. 4) detected on high resolution profiles and cored at Site MD01-
2431 (Beck et al., 2007) was not reached at Site MD01-2425.

Figure 3 displays the general correlation on the basis of high resolution bulk Magnetic25

Susceptibility (MS) profiles. All other measured parameters (not added here: mineral-
ogy and chemistry, biogenic and bio-induced markers), 14C ages, and the non marine-
to-marine change horizon, complete the correlation critieria. For the same Late Glacial
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part of the succession (from about 16 kyr BP to the marine/no marine limit (our “ref-
erence layer”, Figs. 2 and 3)), homogenites+ turbidites (HmTu) appear more frequent
in Core MD01-2425 (Çinarcik Basin) than in Core MD01-2431 (Central Basin). This
difference is also mentionned by Drab et al. (2012) for the last 2.5 kyr BP (marine sec-
tion), based on short piston core; these authors also proposed several event-by-event5

correlations and attributions to historical earthquakes.
Despite the X-ray pictures resolution and sampling intervals of the different logs, we

could not ensure an “event-by-event” correlation between Çinarcik and Central Basins
along the whole non marine section. Conversely, an “event-by-event” correlation within
the Central Basin could be proposed for the last 2 kyr preceeding the main hydro-10

logic change (blue rectangles on Fig. 3). Figure 4a and b shows the location of Cores
MD01-2429 and MD01-2431 and the overall correlations previously proposed by Beck
et al. (2007) and Eriş et al. (2012) based on 3.5 kHz seismic reflection profile.

4 Inferred co-seismic sedimentary events on both sides of the southern scarp
of the Central Basin15

The two analyzed sites are on both sides of the southern limit of the “inner” Central
Basin (Fig. 4a) with a small relative depth difference (50 m at 1200 m b.s.l.). Figure 4b
displays their position with respect to a major active fault scarp. Previous preliminar
observations of these cores had demonstrated that the high difference of mean sedi-
mentation rates between the two sites (Fig. 4b) was essentially due to the difference of20

instantaneous sedimentary events thicknesses (Beck et al., 2007).
Assuming the synchroneity of the “reference layer” in the two cores, a detailed anal-

ysis was later performed downcore, starting immediately below. For the fine-grained
“back ground” sedimentation, because of its hemipelagic-type deposition, the same
sedimentation rate was assumed at the two sites. The proposed layer-by-layer corre-25

lation (Fig. 5) is based on: (i) precise delimitation of hemipelagic intervals, with same
thicknesses, (ii) similarities of subdivisions within HmTu composite layers. The cor-
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rrelation could be achieved for a 2 m succession in Core MD01-2431 which appears
equivalent to a 6.2 m succession in Core MD01-2429, the whole for a 2 kyr duration. 11
homogenite+ turbidites events (HmTu) account for the difference. For the thickest ones
(HmTu A, C, E, H, K) the homogene upper term accounts for about 90 % of the thick-
ness increase in the deeper site. Assuming an earthquake origin for these sedimentary5

events, and the tendancy of the associated suspension to settle in deepest areas (in
Chapron et al., 1999), we consider the increased fills of the downgoing side as succes-
sive “seals off” of the created co-seismic scarps (Fig. 6 insert, case 2a). In the Lesser
Antilles, Beck et al. (2012) described an active normal fault upon which the sea floor is
maintained flat and horizontal, being each co-seismic offset quite exactly compensated10

by a coeval silty-sandy homogenite (Fig. 6 insert, case 2b). We tentatively applied their
2b model to the Central Basin events. 10 of the 11 events were plot on an age vs.
thickness difference log (Fig. 6). 6 of them led to significant values between 40 cm to
160 cm (Fig. 6).

Although the investigated sediments are recent with a reduced depth-in-core, a pos-15

sible compaction effect has to be discussed as: (i) it concerns mainly clayey-silty mate-
rial, (ii) the thickness of the homogenite term is up to ten times higher on the hanging
wall with respect to the footwall. Based on this differential compaction, a 10 % maxi-
mum estimate is thus proposed for a correction of the thickness difference (leading to
about 44 to 178 cm).20

The inferred offsets were separated by variable time intervals (100 to 550 yr); if taking
into account the 11 events, a mean 180 yr interval is deduced. The time distribution is
in agreement with previously published paleoseismic results based on sedimentary
record in the same area (Beck et al., 2007; Drab et al., 2012). In the present study,
a precise rupturing site could be attributed to the sedimentary events.25
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5 Discussion

The proposed used of homogenites+ turbidites (HmTu) to analyze subaqueous ac-
tive faulting along the inner Central Basin led to estimate a set of inferred co-seismic
offsets, for a 2 kyr-lasting period. As it is a 2-D approach, the results only concern
a vertical component (cf. Figs. 4 and 6). The latter may represent either the vertical5

component of an oblique slip displacement or a subvertical (normal here) one. West of
the Central Basin, a historical scarp was observed and analyzed (Armijo et al., 2005;
Uçarcuş, 2010) displaying locally low angle dipping slickensides. This site belongs to
a NAF section with dominant strike slip behaviour. Applying such low angles displace-
ments to account for our vertical offset values, especially the highest, would result in10

anomalously high lateral offsets (e.g. 15◦ dip and 144 cm vertical component). Other-
wise, the here-analyzed site is considered as a limit of a pull apart basin (Armijo et al.,
2005; Uçarcuş, 2010), and different investigations highlighted the importance of ver-
tical component in Izmit Gulf and Tekirdağ Basin (Cormier et al., 2006; Carton et al.,
2007). Based on tsunami modelling applied to the Sea of Marmara, Hébert et al. (2005)15

conclude to the importance of vertical offset related to faulting or to submarine land-
slides. In the following, we thus assumed that our estimated values represent dominant
vertical throws, i.e. normal offsets.

With respect to an approach in terms of paleo-magnitude (Mw) of the earthquakes
associated to estimated offsets, additionnal data are needed to propose an actual,20

complete, paloseismic approach: horizontal length and lower limit of rupturing. Nev-
ertheless, we propose estimations for two inferred offset values (44 cm and 178 cm;
Fig. 6; with compaction effect). We consider:

– a 70◦ mean fault dip as displayed by deep seismic reflection data from Laigle
et al. (2008)25

– two possibilities for the sea bottom rupture horizontal length: 8 km if considering
the total length of the SW side of the Inner Central Basin “losange”, or 5 km if
considering only the eastern continuous scarp (see on Fig. 4a)
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– a brittle/ductile transition at two different depths following the distribution proposed
by Inan et al. (2007, in Uçarkuş, 2010): 12 km and 20 km. These values respec-
tively correspond to the western termination and the eastern half of the analyzed
scarp.

We applied the Moment Magitude Calculator software (Jet Propulsion Laboratory and5

University of Southern Carolina, 2013) with two current shear modulus values. The
results (Table 1) show Mw comprised between 5.9 and 6.6. The corresponding MO
(seismic moment) values, the fault length and the fault surface values, were plotted on
two diagrams, respectively from Kanamori and Anderson (1975) and Henry and Das
(2001). Our results better fit with intraplate earthquakes distribution and using a 8 km10

rupture length (thus the whole SW limit of the Inner Central Basin).
In terms of paleoseismicity, our results only concern the pre-Holocene period. Re-

garding the thickness difference between the two sites (three times higher on the hang-
ing wall), there is no drastic change at the non marine/marine limit. For the marine
(upper) part, a specific sedimentary processe is still driving an overthickening on the15

hanging wall (“inner” Central Basin) but not enough to compensate the scarp as before
(insert Fig. 6, Holocene situation). The few thin homogenites+ turbidites we observed
cannot account for the difference. Nevertheless, the top of the marine part (partly
disturbed in our giant piston cores) corresponds to a conspicuous increase in M.S.
(Fig. 3). A 4 m long piston core, taken close to Site MD01-2429, shows a set of tur-20

bidites+homogenites (Drab et al., 2012); the corresponding interval is approximately
comprised between 2 kyr BP and Present.

To explain the remaining thickness difference during the 13 kyr BP-to Present pe-
riod, we favour a hypothesis implying two combined mechanisms: (1) the water vertical
density profile led to more hyperpycnal distribution of gravity reworked sediments, (2)25

coarse material strongly decreased due to change in weathering condition. Checking
this hypothesis needs further higher resolution analysis of the sediments (especially
the laminated episodes). The present day depth difference between Sites MD01-2429
and MD01-2431 (Fig. 5a and b) – about 50 m – corresponds to about 12.5 kyr. The
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post-“reference layer” interval (the marine part) shows a 20 m “additionnal” thickness,
leading to about 70 m of total vertical displacement (approx. 75 m slip with a mean
70◦ fault plane dip). This could correspond to a 6 mm yr−1 mean normal offset, which
distribution into creep vs. co-seismic increments has to be further discussed. Consid-
ering a relatively low number of sedimentary events in the Central Basin with respect5

to Tekirdağ Basin, Drab et al. (2012) underlined different explanation, including partial
creeping along the Central segment. For a longer period, we observe a similar differ-
ence between Central Basin and Çinarcik Basin, with evidences of a specific behaviour
of the southern limit of the former.

6 Conclusions10

The detailed sedimentological analysis of a sedimentary accumulation bounding a sub-
aqueous active fault confirmed the occurrence of co-seismic offsets through coeval
specific events. It permitted to estimate their values and also confirms a dominantly co-
seismic behaviour (null or negligible creep) at least for a 2 kyr time interval. With up to
1.8 m normal slip values, added to local structural and seismological data, this archive15

led to propose paleo-magnitude values (Mw between 5.9 and 6.6) compatible with his-
torical data. These results bring additionnal arguments for seismic hazard assessment
along the central portion of the N.A.F. (Sea of Marmara’s Central Basin).
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Table 1. Estimation of moment magnitudes Mw for the southwestern scarp of the Central Basin.

Horizontal rupture length

brittle/ductile limit 5 km 8 km

3.0 1011 dyne cm−2 47 cm 12 km 5.9 Mw 6.1 Mw
shear modulus offset 20 km 6.1 Mw 6.2 Mw

2.5 1011 dyne cm−2 47 cm 12 km 5.9 Mw 6.0 Mw
shear modulus offset 20 km 6.0 Mw 6.1 Mw

3.0 1011 dyne cm−2 190 cm 12 km 6.3 Mw 6.5 Mw
shear modulus offset 20 km 6.5 Mw 6.6 Mw

2.5 1011 dyne cm−2 190 cm 12 km 6.3 Mw 6.4 Mw
shear modulus offset 20 km 6.4 Mw 6.6 Mw

4094

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/2/4069/2014/nhessd-2-4069-2014-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/2/4069/2014/nhessd-2-4069-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
2, 4069–4100, 2014

Estimation of
successive

co-seismic vertical
offsets

C. Beck et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

-  100
-100

- 100

- 100

- 250

- 250

           - 500

- 500
- 750

-750

- 750

- 1000
- 1000-1000

-1250

-100

MD01-2429
Tekirdag 

Basin
 

inarcik Basin

Istanbul

Izmit

25 Km 

North Anatolian Fault

-100 Water depth (m)

Core location0 m

2500 m Reverse fault
Normal fault
Strike slip fault

41 00'

40 30

27 00' 29 00'28 00'

MD01-2431

Eurasian Plate
North Anatolian Fault

25 mm/yr
Anatolian Plate

Ar
ab

ia
n 

Pl
at

e

Aegean  
Sea

African Plate D
ea

d 
Se

a 
Fa

ul
tHellenic Trench

30 mm/yr

10 mm/yr

 Ridge

20 30

35

40 M
editerranean 

MD01-2425

Dard
an

ell
es

Bosphorus

Black Sea
S  E  A    O  F    M  A  R  M  A  R  A

Orta (Central) Basin

Figure 1. The Sea of Marmara and the North Anatolian Fault: simplified bathymetry and active
structures. Location of analyzed core. NAF geometry simplified from Armijo et al. (2002, 2005);
GPS kinematics from McClusky et al. (2000), Reilinger et al. (2006).
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Figure 2. Age/depth curve of Core MD01-2425 (Çinarcik Basin) displaying major instantaneous
deposits (homogenite+ turbidite). Red dashed line indicates the limit between non marine (be-
low) and marine sequences (reference layer displayed on Figs. 3 and 5); pLGH: pre-Late Glacial
Homogenite (Beck et al., 2007).
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Figure 3. Chronostratigraphic correlations between the Çinarcik Basin (Core MD01-2425) and
the Central Basin (Cores MD01-2429 an -2431). Blue rectangles correspond to close up and
detailed correlation on Fig. 5.
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Figure 4. Detailed location of Orta/Central Basin’s long cores. (A) Bathymetry taken from Ran-
gin et al. (2001); (B) very high resolution seismic profile from MARMARASCARPS survey
(Armijo et al., 2005; Uçarkuş, 2010). Red dashed line indicates the limit between non marine
(below) and marine sequences (also underlined on Figs. 3–5).
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