Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impact of ABCC2 polymorphisms on high-dose methotrexate pharmacokinetics in patients with lymphoid malignancy

Abstract

Human multidrug resistance-related protein 2 (MRP2, encoded by ABCC2) is involved in the transport of anionic drugs such as methotrexate (MTX). We prospectively investigated the influence of four common ABCC2 genetic variants (rs717620, rs2273697, rs8187694 and rs8187710) on MTX pharmacokinetics parameters. MTX concentrations were monitored in 50 patients with lymphoid malignancy (27 males; mean age: 53±17 years) receiving high-dose MTX (5.13±1.88 g m2 in a 4-h perfusion). The population pharmacokinetics modelling showed that ABCC2 −24T allele (rs717620) had a combined influence on both MTX elimination and distribution. The MTX clearance and distribution volume were significantly higher in carriers of at least one copy of the −24T allele as compared with noncarriers: 8.6±2.2 vs 6.7± 2.5 l h−1, P<0.01 and 30.7±7.7 vs 22.1±8.8 l, P<0.001, respectively. Consequently, −24T allele carriers were more prone to reach MTX nontoxic levels, 48 h after administration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Locatelli F, Zecca M, Messina C, Rondelli R, Lanino E, Sacchi N et al. Improvement over time in outcome for children with acute lymphoblastic leukemia in second remission given hematopoietic stem cell transplantation from unrelated donors. Leukemia 2002; 16: 2228–2237.

    Article  CAS  PubMed  Google Scholar 

  2. Shipp MA, Yeap BY, Harrington DP, Klatt MM, Pinkus GS, Jochelson MS et al. The m-BACOD combination chemotherapy regimen in large-cell lymphoma: analysis of the completed trial and comparison with the M-BACOD regimen. J Clin Oncol 1990; 8: 84–93.

    Article  CAS  PubMed  Google Scholar 

  3. Patte C, Michon J, Frappaz D, Leverger G, Rubie H, Soussain C et al. Therapy of Burkitt and other B-cell acute lymphoblastic leukaemia and lymphoma: experience with the LMB protocols of the SFOP (French Paediatric Oncology Society) in children and adults. Baillieres Clin Haematol 1994; 7: 339–348.

    Article  CAS  PubMed  Google Scholar 

  4. Graf N, Winkler K, Betlemovic M, Fuchs N, Bode U . Methotrexate pharmacokinetics and prognosis in osteosarcoma. J Clin Oncol 1994; 12: 1443–1451.

    Article  CAS  PubMed  Google Scholar 

  5. Evans WE, Crom WR, Abromowitch M, Dodge R, Look AT, Bowman WP et al. Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. Identification of a relation between concentration and effect. N Engl J Med 1986; 314: 471–477.

    Article  CAS  PubMed  Google Scholar 

  6. Breithaupt H, Küenzlen E . Pharmacokinetics of methotrexate and 7-hydroxymethotrexate following infusions of high-dose methotrexate. Cancer Treat Rep 1982; 66: 1733–1741.

    CAS  PubMed  Google Scholar 

  7. Bressolle F, Bologna C, Kinowski JM, Arcos B, Sany J, Combe B . Total and free methotrexate pharmacokinetics in elderly patients with rheumatoid arthritis. A comparison with young patients. J Rheumatol 1997; 24: 1903–1909.

    CAS  PubMed  Google Scholar 

  8. Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther 2002; 302: 666–671.

    Article  CAS  PubMed  Google Scholar 

  9. Vlaming ML, Can Esch A, Pala Z, Wagenaar E, Van de Wetering K, Van Tellingen O et al. ABCC2 (MRP2), ABCC3 (MRP3), and ABCG2 (BCRP1) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7-hydrozymethotrexate in vivo. Mol Cancer Ther 2009; 8: 3350–3359.

    Article  CAS  PubMed  Google Scholar 

  10. Bakos E, Evers R, Sinko E, Varadi A, Borst P, Sarkadi B . Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol Pharmacol 2000; 57: 760–768.

    Article  CAS  PubMed  Google Scholar 

  11. Zolk O, Fromm MF . Transporter-mediated drug uptake and efflux: important determinants of adverse drug reactions. Clin Pharmacol Ther 2011; 89: 798–805.

    Article  CAS  PubMed  Google Scholar 

  12. Toh S, Wada M, Uchiumi T, Inokuchi A, Makino Y, Horie Y et al. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin–Johnson syndrome. Am J Hum Genet 1999; 64: 739–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hulot JS, Villard E, Maguy A, Morel V, Mir L, Tostivint I et al. A mutation in the drug transporter gene ABCC2 associated with impaired methotrexate elimination. Pharmacogenet Genomics 2005; 15: 277–285.

    Article  CAS  PubMed  Google Scholar 

  14. Megaraj V, Zhao T, Paumi CM, Gerk PM, Kim RB, Vore M . Functional analysis of nonsynonymous single nucleotide polymorphisms of multidrug resistance-associated protein 2 (ABCC2). Pharmacogenet Genomics 2011; 21: 506–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arlanov R, Porter A, Strand D, Brough R, Karpova D, Kerb R et al. Functional characterization of protein variants of the human multidrug transporter ABCC2 by a novel targeted expression system in fibrosarcoma cells. Hum Mutat 2012; 33: 750–762.

    Article  CAS  PubMed  Google Scholar 

  16. Beal SL, Sheiner LB . NONMEM User’s Guide. NONMEM Project Group, University of California at San Francisco: San Francisco, 1991.

    Google Scholar 

  17. Comets E, Brendel K, Mentre F . Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed 2008; 90: 154–166.

    Article  PubMed  Google Scholar 

  18. Parke J, Holford NH, Charles BG . A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed 1999; 59: 19–29.

    Article  CAS  PubMed  Google Scholar 

  19. Keppler D . Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 2011; 201: 299–323.

    Article  CAS  Google Scholar 

  20. Zhang Y, Zhao T, Li W, Vore M . The 5′-untranslated region of multidrug resistance associated protein 2 (MRP2; ABCC2) regulates downstream open reading frame expression through translational regulation. Mol Pharmacol 2010; 77: 237–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miura M, Satoh S, Inoue K, Kagaya H, Saito M, Inoue T et al. Influence of SLCO1B1, 1B3, 2B1, and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 2007; 63: 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  22. Rau T, Erney B, Göres R, Eschenhagen T, Beck J, Langer T . High-dose methotrexate in pediatric acute lymphoblastic leukemia: impact of ABCC2 polymorphisms on plasma concentrations. Clin Pharmacol Ther 2006; 80: 468–476.

    Article  CAS  PubMed  Google Scholar 

  23. Cascorbi I . Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 2006; 112: 457–473.

    Article  CAS  PubMed  Google Scholar 

  24. Haenisch S, Zimmermann U, Dazert E, Wruck CJ, Dazert P, Siegmund S et al. Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex. Pharmacogenomics J 2007; 7: 56–65.

    Article  CAS  PubMed  Google Scholar 

  25. Choi JH, Ahn BM, Yi J, Lee JH, Nam SW, Chon CY et al. MRP2 haplotypes confer differential susceptibility to toxic liver injury. Pharmacogenet Genomics 2007; 17: 403–415.

    Article  CAS  PubMed  Google Scholar 

  26. Ufer M, Mosyagin I, Muhle H, Jacobsen T, Haenisch S, Häsler R et al. Non-response to antiepileptic pharmacotherapy is associated with the ABCC2 -24C&gt;T polymorphism in young and adult patients with epilepsy. Pharmacogenet Genomics 2009; 19: 353–362.

    Article  CAS  PubMed  Google Scholar 

  27. Deo AK, Prasad B, Balogh L, Lai Y, Unadkat JD . Interindividual variability in hepatic expression of the multidrug resistance-associated protein 2 (MRP2/ABCC2): quantification by liquid chromatography/tandem mass spectrometry. Drug Metab Dispos 2012; 40: 852–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vlaming ML, Van Esch A, Van de Steeg E, Pala Z, Wagenaar E, Van Tellingen O et al. Impact of ABCC2, ABCC3 and ABCG2 on the oral pharmacokinetics of methotrexate and its main metabolite 7-hydroxymethotrexate. Drug Metab Dispos 2011; 39: 1338–1344.

    Article  CAS  PubMed  Google Scholar 

  29. Rousseau A, Sabot C, Delepine N, Delepine G, Debord J, Lachâtre G et al. Bayesian estimation of methotrexate pharmacokinetic parameters and area under the curve in children and young adults with localised osteosarcoma. Clin Pharmacokinet 2002; 41: 1095–1104.

    Article  CAS  PubMed  Google Scholar 

  30. Pignon T, Lacarelle B, Duffaud F, Guillet P, Catalin J, Durand A et al. Dosage adjustment of high-dose methotrexate using Bayesian estimation: a comparative study of two different concentrations at the end of 8-h infusions. Ther Drug Monit 1995; 17: 471–478.

    Article  CAS  PubMed  Google Scholar 

  31. Odoul F, Le Guellec C, Lamagnere JP, Breilh D, Saux MC, Paintaud G et al. Prediction of methotrexate elimination after high dose infusion in children with acute lymphoblastic leukaemia using a population pharmacokinetic approach. Fundam Clin Pharmacol 1999; 13: 595–604.

    Article  CAS  PubMed  Google Scholar 

  32. Aumente D, Buelga DS, Lukas JC, Gomez P, Torres A, Garcıa MJ . Population pharmacokinetics of high-dose methotrexate in children with acute lymphoblastic leukaemia. Clin Pharmacokinet 2006; 45: 1227–1238.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was sponsored by Assistance-Publique Hôpitaux de Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-S Hulot.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, N., Marsot, A., Villard, E. et al. Impact of ABCC2 polymorphisms on high-dose methotrexate pharmacokinetics in patients with lymphoid malignancy. Pharmacogenomics J 13, 507–513 (2013). https://doi.org/10.1038/tpj.2012.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.37

Keywords

This article is cited by

Search

Quick links