Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SUMO protease SENP1 induces isomerization of the scissile peptide bond

Abstract

Small ubiquitin-like modifier (SUMO)-specific protease SENP1 processes SUMO-1, SUMO-2 and SUMO-3 to mature forms and deconjugates them from modified proteins. To establish the proteolytic mechanism, we determined structures of catalytically inactive SENP1 bound to SUMO-1–modified RanGAP1 and to unprocessed SUMO-1. In each case, the scissile peptide bond is kinked at a right angle to the C-terminal tail of SUMO-1 and has the cis configuration of the amide nitrogens. SENP1 preferentially processes SUMO-1 over SUMO-2, but binding thermodynamics of full-length SUMO-1 and SUMO-2 to SENP1 and Km values for processing are very similar. However, kcat values differ by 50-fold. Thus, discrimination between unprocessed SUMO-1 and SUMO-2 by SENP1 is based on a catalytic step rather than substrate binding and is likely to reflect differences in the ability of SENP1 to correctly orientate the scissile bonds in SUMO-1 and SUMO-2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the complex between SENP1 C603A and SUMO-1–modified RanGAP1.
Figure 2: Structure of full-length SUMO-1 bound to SENP1 C603A.
Figure 3: SENP1 C603A induces a conformational change in substrates in solution.
Figure 4: Thermodynamics of substrate and product binding by SENP1 C603A.
Figure 5: Steady-state kinetic analysis of isopeptidase and C-terminal hydrolase activities of SENP1 for SUMO-1 and SUMO-2 substrates.
Figure 6: Proposed mechanism for cleavage of substrates by SENP1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Meluh, P.B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793–807 (1995).

    Article  CAS  Google Scholar 

  2. Rosas-Acosta, G., Russell, W.K., Deyrieux, A., Russell, D.H. & Wilson, V.G. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell. Proteomics 4, 56–72 (2005).

    Article  CAS  Google Scholar 

  3. Vertegaal, A.C. et al. A proteomic study of SUMO-2 target proteins. J. Biol. Chem. 279, 33791–33798 (2004).

    Article  CAS  Google Scholar 

  4. Holmstrom, S., Van Antwerp, M.E. & Iniguez-Lluhi, J.A. Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy. Proc. Natl. Acad. Sci. USA 100, 15758–15763 (2003).

    Article  CAS  Google Scholar 

  5. Azuma, Y., Arnaoutov, A. & Dasso, M. SUMO-2/3 regulates topoisomerase II in mitosis. J. Cell Biol. 163, 477–487 (2003).

    Article  CAS  Google Scholar 

  6. Bernier-Villamor, V., Sampson, D.A., Matunis, M.J. & Lima, C.D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356 (2002).

    Article  CAS  Google Scholar 

  7. Lin, D. et al. Identification of a substrate recognition site on ubc9. J. Biol. Chem. 277, 21740–21748 (2002).

    Article  CAS  Google Scholar 

  8. Sampson, D.A., Wang, M. & Matunis, M.J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664–21669 (2001).

    Article  CAS  Google Scholar 

  9. Melchior, F., Schergaut, M. & Pichler, A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618 (2003).

    Article  CAS  Google Scholar 

  10. Tatham, M.H. et al. Polymeric chains of sumo-2 and sumo-3 are conjugated to protein substrates by sae1/sae2 and ubc9. J. Biol. Chem. 276, 35368–35374 (2001).

    Article  CAS  Google Scholar 

  11. Li, S.J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999).

    Article  CAS  Google Scholar 

  12. Mossessova, E. & Lima, C.D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876 (2000).

    Article  CAS  Google Scholar 

  13. Yeh, E.T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1–14 (2000).

    Article  CAS  Google Scholar 

  14. Gan-Erdene, T. et al. Identification and characterization of DEN1, a deneddylase of the ULP family. J. Biol. Chem. 278, 28892–28900 (2003).

    Article  CAS  Google Scholar 

  15. Mendoza, H.M. et al. NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J. Biol. Chem. 278, 25637–25643 (2003).

    Article  CAS  Google Scholar 

  16. Wu, K. et al. DEN1 is a dual function protease capable of processing the C-terminus of Nedd8 deconjugating hyper-neddylated CUL1. J. Biol. Chem. 278, 28882–28891 (2003).

    Article  CAS  Google Scholar 

  17. Di Bacco, A. et al. The SUMO-specific protease SENP5 is required for cell division. Mol. Cell. Biol. 26, 4489–4498 (2006).

    Article  CAS  Google Scholar 

  18. Gong, L. & Yeh, E.T. Characterization of a family of nucleolar sumo-specific proteases with preference for sumo-2 or sumo-3. J. Biol. Chem. 281, 15869–15877 (2006).

    Article  CAS  Google Scholar 

  19. Yamaguchi, T. et al. Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol. Cell. Biol. 25, 5171–5182 (2005).

    Article  CAS  Google Scholar 

  20. Gong, L., Millas, S., Maul, G.G. & Yeh, E.T. Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem. 275, 3355–3359 (2000).

    Article  CAS  Google Scholar 

  21. Shen, L.N., Dong, C., Liu, H., Naismith, J.H. & Hay, R.T. The structure of SENP1 SUMO-2 co-complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochem. J. 397, 279–288 (2006).

    Article  CAS  Google Scholar 

  22. Xu, Z. & Au, S.W. Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. Biochem. J. 386, 325–330 (2005).

    Article  CAS  Google Scholar 

  23. Reverter, D. & Lima, C.D. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687–692 (2005).

    Article  CAS  Google Scholar 

  24. Reverter, D. et al. Structure of a complex between Nedd8 and the Ulp/Senp protease family member Den1. J. Mol. Biol. 345, 141–151 (2005).

    Article  CAS  Google Scholar 

  25. Shen, L.N. et al. Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1. EMBO J. 24, 1341–1351 (2005).

    Article  CAS  Google Scholar 

  26. Xu, Z. et al. Crystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO specific protease. Biochem. J. 398, 345–352 (2006).

    Article  CAS  Google Scholar 

  27. Baba, D. et al. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979–982 (2005).

    Article  CAS  Google Scholar 

  28. Pichler, A. et al. SUMO modification of the ubiquitin-conjugating enzyme E2–25K. Nat. Struct. Mol. Biol. 12, 264–269 (2005).

    Article  CAS  Google Scholar 

  29. Reverter, D. & Lima, C.D. A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 12, 1519–1531 (2004).

    Article  CAS  Google Scholar 

  30. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

    Article  CAS  Google Scholar 

  31. Cheng, Y. & Prusoff, W.H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  Google Scholar 

  32. Johnston, S.C., Riddle, S.M., Cohen, R.E. & Hill, C.P. Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18, 3877–3887 (1999).

    Article  CAS  Google Scholar 

  33. Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041–1054 (2002).

    Article  CAS  Google Scholar 

  34. Macauley, M.S. et al. Structural and dynamic independence of isopeptide-linked RanGAP1 and SUMO-1. J. Biol. Chem. 279, 49131–49137 (2004).

    Article  CAS  Google Scholar 

  35. Radisky, E.S. & Koshland, D.E.J. A clogged gutter mechanism for protease inhibitors. Proc. Natl. Acad. Sci. USA 99, 10316–10321 (2002).

    Article  CAS  Google Scholar 

  36. Liu, B., Schofield, C.J. & Wilmouth, R.C. Structural analyses on intermediates in serine protease catalysis. J. Biol. Chem. 281, 24024–24035 (2006).

    Article  CAS  Google Scholar 

  37. Klabunde, T., Sharma, S., Telenti, A., Jacobs, W.R., Jr. & Sacchettini, J.C. Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nat. Struct. Biol. 5, 31–36 (1998).

    Article  CAS  Google Scholar 

  38. Brauer, A.B., Domingo, G.J., Cooke, R.M., Matthews, S.J. & Leatherbarrow, R.J. A conserved cis peptide bond is necessary for the activity of Bowman-Birk inhibitor protein. Biochemistry 41, 10608–10615 (2002).

    Article  CAS  Google Scholar 

  39. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  40. Tatham, M.H. et al. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry 42, 9959–9969 (2003).

    Article  CAS  Google Scholar 

  41. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 ESF-EAMCB Newsl. Prot. Crystallogr. 26, 1–110 (1992).

    Google Scholar 

  42. Collaborative Computational Project, No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  43. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  44. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  45. Bossis, G. et al. A fluorescence resonance energy transfer-based assay to study SUMO modification in solution. Methods Enzymol. 398, 20–32 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

pHis-TEV-30a was a kind gift from H. Liu, University of St. Andrews. This work was supported by CRUK, AICR and the Wellcome Trust. Structural analysis was carried out in the Scottish Structural Proteomics Facility, which is funded by the Biotechnology Biological Science Research Council and The Scottish Funding Council. J.H.N. is a Biotechnology Biological Science Research Council career development fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James H Naismith or Ronald T Hay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Final 2FoFc density at scissile bonds. (PDF 282 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, L., Tatham, M., Dong, C. et al. SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat Struct Mol Biol 13, 1069–1077 (2006). https://doi.org/10.1038/nsmb1172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing