Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T22:42:57.828Z Has data issue: false hasContentIssue false

The iron-rich blueschist facies minerals: I. Deerite

Published online by Cambridge University Press:  05 July 2018

R. Muir Wood*
Affiliation:
Department of Mineralogy and Petrology, Cambridge

Summary

The mineral deerite is restricted in occurrence to blueschist facies meta-ironstones. From the ideal formula of Si12O40(OH)10 there are a limited range of substitutions: Ti and V for Fe3+ and Mn on the Fe2+ site. In the present survey of deerite compositions from the majority of deerite localities the maximum substitutions have been 2Ti and 3Mn in the above formula. There is an at present unexplained anomaly in the totals of a number of the analyses indicating that there may be variations away from the ideal formula towards increased hydroxyl and decreased cation contents.

From differences between the mineral compatibilities of deerites from the higher-grade Franciscan exotic block blueschist localities and those from more conformable Alpine blueschists, in conjunction with previous work on the experimental stabilities of the low-pressure/low-temperature hydrous iron silicate minerals, it has been possible to map the form of the low-pressure deerite stability field involving reactions of greenalite or minnesotaite or grunerite with magnetite and quartz. Within the deerite stability field, further deerite-forming reactions involve the breakdown of riebeckite and the hydrous incompatibility of magnetite with quartz; both are very dependent on the activity of sodium. A low-pressure stability to 4 kb at 200 °C and 6 kb at 300 °C are estimated from these low-temperature breakdown reactions. This fits in well with the high-pressure deerite stability determinations of Langer et al. (1977).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrell, (S. O.) and Gay, (M.), 1970. Bull. Soc.fr. Minéral. Crystallogr. 93, 263.Google Scholar
Agrell, (S. O.) Bown, (M. G.), and McKie, (D.), 1964. Mineral. Soc. Notice, No. 130.Google Scholar
Agrell, (S. O.) Bown, (M. G.), and McKie, (D.) 1965. Am. Mineral. 50, 278.Google Scholar
Ayres, (D. E.), 1972. Econ. Geol. 67, 1214.10.2113/gsecongeo.67.8.1214CrossRefGoogle Scholar
Bancroft, (G. M.), Burns, (R. G.), and Stone, (A. J.), 1968. Geochim. Cosmochim. Acta, 32, 547.10.1016/0016-7037(68)90045-8CrossRefGoogle Scholar
Black, (P. M.), 1973. Contrib. Mineral. Petrol. 38, 221.CrossRefGoogle Scholar
Bocquet, (J.), 1971. Eclog. Geol. Helv. 64, 71.Google Scholar
Bocquet, (J.) and Forette, (M-C.), 1973. Bull. Soc. ft. Minéral. Crystallogr. 96, 314.Google Scholar
Brown, (E. H.), 1974. Geol. Soc. Am. Bull. 85, 333.2.0.CO;2>CrossRefGoogle Scholar
Burt, (D. M.), 1973. Carnegie Inst. Washington Yearbook, 435.Google Scholar
Carmichael, (I. S. E.), Fyfe, (W. S.), and Maclin, (D. J.), 1966. Nature, 211, 1389.10.1038/2111389a0CrossRefGoogle Scholar
Coleman, (R. G.), 1967. Tectonophysics. 4, 479.CrossRefGoogle Scholar
Coleman, (R. G.) 1972. US Geol. Surv. Bull. 1339.Google Scholar
Coleman, (R. G.) and Lee, (D. E.), 1963. J. Petrol. 4, 260.10.1093/petrology/4.2.260CrossRefGoogle Scholar
Deer, (W. A.), Howie, (R. A.), and Zussman, (J.), 1962. Rock forming minerals, 5 vols., Longmans.Google Scholar
Ellenberger, (F.), 1958. Étude Géologique du pays de Vanoise: Mém. explic. Carte geol. Fr.Google Scholar
Ernst, (W. G.), 1965. Geol. Soc. Am. Bull. 76, 879.10.1130/0016-7606(1965)76[879:MPIFMR]2.0.CO;2CrossRefGoogle Scholar
Ernst, (W. G.) Seki, (Y.), Onuki, (H.), and Gilbert, (M. C.), 1970. Geol. Soc. Am. Memoir, 124.Google Scholar
Finger, (L. W.) and Zottai, (T.), 1967. Trans. Am. Geophys. Union. 48, 233.Google Scholar
Flaschen, (S. S.) and Osborne, (E. F.), 1957. Econ. Geol. 52, 923.CrossRefGoogle Scholar
Fleet, (M. E.), 1977. Am. Mineral. 62, 990.Google Scholar
Floran, (R. J.) and Papike, (J. T.), 1975. Geol. Soc. Am. Bull. 86, 1169.2.0.CO;2>CrossRefGoogle Scholar
Forbes, (W. C.), 1969. Am. Mineral. 54, 1399.Google Scholar
Forbes, (W. C.) 1971. J. Geol. 79, 63.CrossRefGoogle Scholar
Forbes, (W. C.) 1977. Am. J. Sci. 277, 735.CrossRefGoogle Scholar
Frank, (E.) and Bunbury, (D. St. P.), 1974. J. Inorg. Nucl. Chem. 36, 1725.CrossRefGoogle Scholar
French, (B. M.), 1968. Minnesota Geol. Surv. Bull. 45.Google Scholar
French, (B. M.) 1973. Econ. Geol. 68, 1063.10.2113/gsecongeo.68.7.1063CrossRefGoogle Scholar
Garrels, (R. M.) and Christ, (C. L.), 1965. In Solutions, Minerals and Equilibria. Harper and Row, New York.Google Scholar
Grubb, (P. L. C.), 1971. Econ. Geol. 66, 28.Google Scholar
Gruner, (J. W.), 1944. Am. Mineral. 29, 363.Google Scholar
Keesman, (I.), Matthes, (S.), Schreyer, (W.), and Seifert, (F.), 1971. Contrib. Mineral. Petrol. 31, 132.CrossRefGoogle Scholar
Lacroix, (A.), 1941. Acad. Sci. Paris, Mem. 65, 71.Google Scholar
Langer, (K.) and Schreyer, (W.), 1970. Coll. Abstr. IMA- IAGOD meeting, Japan, 9-23, 231.Google Scholar
Langer, (K.) Lattard, (D.), and Schreyer, (W.), 1977. Contrib. Mineral. Petrol. 60, 271.CrossRefGoogle Scholar
Muir Wood, (R.), 1977. Ph.D. thesis, Cambridge.Google Scholar
Povarennykh, (A. S.), 1972. Crystal chemical classification of minerals(trans. Bradley). Plenum Press, London.CrossRefGoogle Scholar
Schliestedt, (M.), 1978. Contrib. Mineral. Petrol. 66, 105.CrossRefGoogle Scholar
Steadman, (R.) and Youell, (R. F.), 1958. Nature, 181, 45.CrossRefGoogle Scholar
Taylan Liinel, (A.), 1966. Ph.D. thesis, University of Bristol.Google Scholar
Wenk, (H-R.), Biagioni, (R. N.),. Hsiao, (J.), Lee, (D. L.), Tanzella, (F. L.), Yeh, (S. M.), Hodgson, (K.), and Nissen, (H. U.), 1976. Naturwiss. 63, 433.10.1007/BF00599415CrossRefGoogle Scholar