Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Langmuir–Blodgett nanotemplates for protein crystallography

Abstract

The new generation of synchrotrons and microfocused beamlines has enabled great progress in X-ray protein crystallography, resulting in new 3D atomic structures for proteins of high interest to the pharmaceutical industry and life sciences. It is, however, often still challenging to produce protein crystals of sufficient size and quality (order, intensity of diffraction, radiation stability). In this protocol, we provide instructions for performing the Langmuir–Blodgett (LB) nanotemplate method, a crystallization approach that can be used for any protein (including membrane proteins). We describe how to produce highly ordered 2D LB protein monolayers at the air–water interface and deposit them on glass slides. LB-film formation can be observed by surface-pressure measurements and Brewster angle microscopy (BAM), although its quality can be characterized by atomic force microscopy (AFM) and nanogravimetry. Such films are then used as a 2D template for triggering 3D protein crystal formation by hanging-drop vapor diffusion. The procedure for forming the 2D template takes a few minutes. Structural information about the protein reorganization in the LB film during the crystallization process on the nano level can be obtained using an in situ submicron GISAXS (grazing-incidence small-angle X-ray scattering) method. MicroGISAXS spectra, measured directly at the interface of the LB films and protein solution in real time, as described in this protocol, can be interpreted in terms of the buildup of layers, islands, or holes. In our experience, the obtained LB crystals take 1–10 d to prepare and they are more ordered and radiation stable as compared with those produced using other crystallization methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LB protein nanotemplate.
Figure 2: Characterization of protein LB thin films.
Figure 3: Representation of the principle of μGISAXS measurement.
Figure 4: Bovine cytochrome P450scc data.
Figure 5: Human protein kinase CK2-α data.
Figure 6: Schematic view of in situ microGISAXS flow crystallization cell.
Figure 7: Actual experimental setup of in situ submicron GISAXS, as described in ref. 34.
Figure 8: Set of photographs for Langmuir–Schaefer preparation of a protein nanotemplate on the cover glass slide.
Figure 9: Examples of crystals formation by classic and LB nanotemplate methods.
Figure 10: Typical microGISAXS patterns of LB versus classic crystal formation.
Figure 11: A vertical cut through the 2D microGISAXS pattern is shown to demonstrate the time evolution of the Yoneda peak formation for a lysozyme crystal.

Similar content being viewed by others

References

  1. Saridakis, E. & Chayen, N.E. Towards a 'Universal' nucleant for protein crystallization. Trends Biotechnol. 27, 99–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. McPherson, A. & Shlichta, P. Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science 239, 385–387 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khurshid, S., Saridakis, E., Govada, L. & Chayen, N.E. Porous nucleating agents for protein crystallization. Nat. Protoc. 9, 1621–1633 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Nicolini, C. et al. Thermal stability of protein secondary structure in Langmuir-Blodgett films. Biochim. Biophys. Acta 1158, 273–278 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Nicolini, C. Protein monolayer engineering: principles and application to biocatalysis. Trends Biotechnol. 15, 395–401 (1997).

    Article  CAS  Google Scholar 

  7. Nicolini, C. et al. P450scc engineering and nanostructuring for cholesterol sensing. Langmuir 17, 3719–3726 (2001).

    Article  CAS  Google Scholar 

  8. Bramanti, E. et al. Qualitative and quantitative analysis of the secondary structure of cytochrome C Langmuir-Blodgett films. Biopolymers 42, 227–237 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Paddeu, S., Ram, M.K. & Nicolini, C. Investigation of ultrathin films of processable poly(o-anisidine) conducting polymer obtained by the Langmuir-Blodgett technique. J. Phys. Chem. B 101, 4759–4766 (1997).

    Article  CAS  Google Scholar 

  10. Pechkova, E., Sartore, M., Giacomelli, L. & Nicolini, C. Atomic force microscopy of protein films and crystals. Rev. Sci. Instr. 78, 093704_1–093704_7 (2007).

    Article  CAS  Google Scholar 

  11. Facci, P., Erokhin, V. & Nicolini, C. Nanogravimetric gauge for surface density measurements and deposition analysis of LB films. Thin Solid Films 230, 86–89 (1993).

    Article  CAS  Google Scholar 

  12. Erokhin, V., Carrara, S., Guerzoni, S., Ghisellini, P. & Nicolini, C. Synchrotron study of heat induced order in protein LB films. Thin Solid Films 327–329, 636–638 (1998).

    Article  Google Scholar 

  13. Erokhin, V., Facci, P. & Nicolini, C. Two-dimensional order and protein thermal stability: high temperature preservation of structure and function. Biosens. Bioelectron. 10, 25–34 (1995).

    Article  CAS  Google Scholar 

  14. Pechkova, E., Tripathi, S. & Nicolini, C. MicroGISAXS of Langmuir-Blodgett protein films: effect of temperature on long-range order. J. Synchrotron Radiat. 16, 330–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Maxia, L., Radicchi, G., Pepe, I.M. & Nicolini, C. Characterization of Langmuir-Blodgett films of rhodopsin. Thermal stability studies. Biophys. J. 69, 1440–1446 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Antolini, F., Paddeu, S. & Nicolini, C. Heat-stable Langmuir-Blodgett film of glutathione-S-transferase. Langmuir 11, 2719–2725 (1995).

    Article  CAS  Google Scholar 

  17. Petrigliano, A., Tronin, A. & Nicolini, C. Deposition and enzymatic activity of Langmuir-Blodgett films of alkaline phosphatase. Thin Solid Films 284285, 752–756 (1996).

    Article  Google Scholar 

  18. Pastorino, L., Berzina, T.S., Troitsky, V.I., Bernasconi, E. & Nicolini, C. Application of monolayer engineering for immobilization of penicillin G acylase. Colloids and Surfaces B: Biointerfaces 23, 289–293 (2002).

    Article  CAS  Google Scholar 

  19. Paddeu, S., Fanigliulo, A., Lanzi, M., Dubrovsky, T. & Nicolini, C. LB-based PAB immunosystem: activity of immobilized urease monolayer. Sens. Actuators B Chem. 25, 876–882 (1995).

    Article  CAS  Google Scholar 

  20. Pechkova, E. & Nicolini, C. From art to science in protein crystallization by means of thin film technology. Nanotechnology 13, 460–464 (2002).

    Article  CAS  Google Scholar 

  21. Pechkova, E. & Nicolini, C. Metodo per la crescita di cristalli di proteine via templati di film sottili proteici omologhi. (Method for protein crystal growth by homologous protein thin film template). Italian Patent ITRM20010405 (A1), filed 9 Jul. 2001, and issued 9 Jan. 2003.

  22. Pechkova, E. & Nicolini, C. Accelerated protein crystal growth onto the protein thin film. J. Cryst. Growth 231, 599–602 (2001).

    Article  CAS  Google Scholar 

  23. Pechkova, E. & Nicolini, C. Protein nucleation and crystallization by homologous protein thin film template. J. Cell Biochem. 85, 243–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Pechkova, E. & Nicolini, C. Atomic structure of a CK2alpha human kinase by microfocus diffraction of extrasmall microcrystals grown with nanobiofilm template. J. Cell Biochem. 91, 1010–1020 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Pechkova, E., Zanotti, G. & Nicolini, C. Three-dimensional atomic structure of a catalytic subunit mutant of human protein kinase CK2. Acta Cryst. D. 59, 2133–2139 (2003).

    Article  CAS  Google Scholar 

  26. Pechkova, E., Vasile, F., Spera, R. & Nicolini, C. Crystallization of alpha and beta subunits of IF2 translation initiation factor from archabacteria Sulfolobus solfataricus. J. Cryst. Growth 310, 3767–3770 (2008).

    Article  CAS  Google Scholar 

  27. Pechkova, E., Tripathi, S., Spera, R. & Nicolini, C. Groel crystal growth and characterization. Biosystems 94, 223–227 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Pechkova, E., Scudieri, D., Belmonte, L. & Nicolini, C. Oxygen-bound Hell's Gate globin I by classical versus LB nanotemplate method. J. Cell Biochem. 113, 1820–1832 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Pechkova, E. & Nicolini, C. Protein nanocrystallography: a new approach to structural proteomics. Trends Biotechnol. 22, 117–122 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Nicolini, C. & Pechkova, E. Nanocrystallography: an emerging technology for structural proteomics. Exp. Rev. Proteomics 1, 253–256 (2004).

    Article  Google Scholar 

  31. Pechkova, E., Roth, S.V., Burghammer, M., Fontani, D. & Nicolini, C. mGISAXS and protein nanotemplate crystallization: methods and instrumentation. J. Synchrotron Radiat. 12, 713–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Nicolini, C. & Pechkova, E. Structure and growth of ultrasmall protein microcrystals by synchrotron radiation: I. microGISAXS and microdiffraction of P450scc. J. Cell Biochem. 97, 544–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Pechkova, E. & Nicolini, C. Structure and growth of ultrasmall protein microcrystals by synchrotron radiation: II. microGISAX and microscopy of lysozyme. J. Cell Biochem. 97, 553–560 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Pechkova, E., Gebhardt, R., Riekel, C. & Nicolini, C. In situ GISAXS: I. Experimental setup for submicron study of protein nucleation and growth. Biophys. J. 99, 1256–1261 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gebhardt, R., Pechkova, E., Riekel, C. & Nicolini, C. In situ microGISAXS: II. Thaumatin crystal growth kinetic. Biophys. J. 99, 1262–1267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pechkova, E. & Nicolini, C. In situ study of nanotemplate-induced growth of lysozyme microcrystals by submicrometer GISAXS. J. Synchrotron Radiat. 18, 287–292 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Roth, S.V. et al. Self-assembled gradient nanoparticle-polymer multilayers investigated by an advanced characterization method: microbeam grazing incidence X-ray scattering. Appl. Phys. Lett. 82, 1935–1937 (2003).

    Article  CAS  Google Scholar 

  38. Roth, S.V., Autherieth, T. & Mueller-Buschbaum, P. In situ observation of nanoparticle ordering at the air-water-substrate boundary in colloidal solutions using x-ray nanobeams. Appl. Phys. Lett. 91, 091915 (2007).

    Article  CAS  Google Scholar 

  39. Muller-Buschbaum, P., Roth, S.V. & Riekel, C. Multiple-scaled polymer surfaces investigated with micro-focus grazing-incidence small-angle x-ray scattering. Europhys. Lett. 61, 639–645 (2003).

    Article  CAS  Google Scholar 

  40. Williams, P.A., Cosme, J., Sridnar, V., Johnson, E.F. & McRee, D.F. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol. Cell 5, 121–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Tennant, M. & McRee, D.E. The first structure of a microsomal P450--implications for drug discovery. Curr. Opin. Drug Discov. Dev. 4, 671–677 (2001).

    CAS  Google Scholar 

  42. Nicolini, C. et al. Prototypes of newly conceived inorganic and biological sensors for health and environmental applications. Sensors 12, 17112–17127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghisellini, P., Paternolli, C., Chiossone, I. & Nicolini, C. Spin state transitions in Langmuir–Blodgett films of recombinant cytochrome P450scc and adrenodoxin. Colloids Surf. B Biointerfaces 23, 313–318 (2002).

    Article  CAS  Google Scholar 

  44. Blodgett, K. & Langmiur, I. Built-up films of barium stearate and their optical properties. Phys. Rev. 51, 964 (1937).

    Article  CAS  Google Scholar 

  45. Langmuir, I. & Schaefer, V. Activities of urease and pepsin monolayers. J. Am. Chem. Soc. 60, 1351–1360 (1938).

    Article  CAS  Google Scholar 

  46. Blodgett, K. Film built by depositing successive monomolecular layers on a solid surface. J. Am. Chem. Soc. 57, 1007–1022 (1935).

    Article  CAS  Google Scholar 

  47. Kuhn, H. Information, electron and energy transfer in surface layers. Pure Appl. Chem. 53, 2105–2122 (1981).

    Article  CAS  Google Scholar 

  48. Nicolini, C. Heat-proof enzymes by Langmuir-Blodgett technique. Ann. N. Y. Acad. Sci. USA 799, 297–311 (1996).

    Article  CAS  Google Scholar 

  49. Nicolini, C. From neural chip and engineered biomolecules to bioelectronic devices: an overview. Biosens. Bioelectron. 10, 105–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Nicolini, C., Erokhin, V. & Ram, M.K. Supramolecular layer engineering for industrial nanotechnology. in Nano-Surface Chemistry (ed. Rosoff, M.), 141–212 (New York: Marcel Dekker, 2001).

  51. Nicolini, C. Molecular Bioelectronics. Singapore, USA and UK: World Scientific, 1–290 (1996).

  52. Nicolini, C. Engineering of enzyme monolayer for industrial biocatalysis. Ann. N. Y. Acad. Sci. 864, 435–441 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Nicolini, C. Supramolecular architecture and molecular bioelectronic. Thin Solid Films 284–285, 1–5 (1996).

    Article  Google Scholar 

  54. Nicolini, C. Molecular Bioelectronics – The 19 years of Progress. 2nd edn, 1–315 Singapore, USA and UK: World Scientific, (2016).

  55. Guryev, O. et al. Orientation of cytochrome P450scc in Langmuir-Blodgett monolayers. Langmuir 13, 299–304 (1997).

    Article  CAS  Google Scholar 

  56. Paternolli, C., Antonini, M., Ghisellini, P. & Nicolini, C. Recombinant cytochrome P450 immobilization for biosensor applications. Langmuir 20, 11706–11712 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Facci, P., Erokhin, V., Paddeu, S. & Nicolini, C. Surface pressure induced structural effects in photosynthetic reaction center Langmuir-Blodgett films. Langmuir 14, 193–198 (1998).

    Article  CAS  Google Scholar 

  58. Facci, P., Erokhin, V. & Nicolini, C. Scanning tunneling microscopy of a monolayer of reaction centers. Thin Solid Films 243, 403–406 (1994).

    Article  CAS  Google Scholar 

  59. Pechkova, E. et al. Thermal stability of lysozyme Langmuir-Schaefer films by FTIR spectroscopy. Langmuir 23, 1147–1151 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Nicolini, C. & Pechkova, E. Nanostructured biofilms and biocrystals. J. Nanosci. Nanotechnol. 6, 2209–2236 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Troitsky, V. et al. Deposition of alternating LB monolayers with a new technique. Thin Solid Films 284–285, 122–126 (1996).

    Article  Google Scholar 

  62. Troitsky, V., Sartore, M., Berzina, T., Nardelli, D. & Nicolini, C. Instrument for depositing Langmuir–Blodgett films composed of alternating monolayers using a protective layer of water. Rev. Sci. Instrum. 67, 4216 (1996).

    Article  CAS  Google Scholar 

  63. Troitsky, V., Berzina, T.S., Pastorino, L., Bernasconi, L. & Nicolini, C. A new approach to the deposition of nanostructured biocatalytic films. Nanotechnology 14, 597–602 (2003).

    Article  CAS  Google Scholar 

  64. Pechkova, E. & Nicolini, C. Proteomics and Nanocrystallography. Springer, 1–190 (2003).

  65. Pechkova, E. & Nicolini, C. From art to science in protein crystallography by means of nanotechnology – one year later. Trends in Nanotechnology Research 31–50 Nova Science Publishers, (2004).

  66. Hann, R.A. Molecular structure and monolayer properties. in Langmuir-Blodgett Films (ed. Roberts, G.G.) 17–92 Springer, (1990).

  67. Nicolini, C., Wright, J. & Pechkova, E. Synchrotron diffraction of multilayered LS PGA film after heating and cooling. NanoWorld J. 1, 4–8 (2015).

    Google Scholar 

  68. Pechkova, E., Fiordoro, S., Barbieri, F. & Nicolini, C. The role of Langmuir-Blodgett (LB) protein thin film in protein crystal growth by LB nanotemplate and robot. J. Nanomed. Nanotechnol, 5, 247 (2014).

    Article  CAS  Google Scholar 

  69. Pechkova, E., Tropiano, G., Riekel, C. & Nicolini, C. Radiation stability of protein crystals grown by nanostructured templates: synchrotron microfocus analysis. Spectrochim. Acta B 59, 1687–1693 (2004).

    Article  CAS  Google Scholar 

  70. Pechkova, E., Tripathi, S., Ravelli, R.G., McSweeney, S. & Nicolini, C. Radiation stability of proteinase K grown by LB nanotemplate method. J. Struct. Biol. 168, 409–418 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Pechkova, E., McSweeney, S. & Nicolini, C. Atomic structure and radiation resistance of Langmuir-Blodgett protein crystals. in Synchrotron Radiation and Structural Proteomics Vol 3, (Pan Stanford Series on Nanobiotechnology; eds. Pechkova, E. & Riekel, C.) 249–275 (Singapore: Pan Stanford Publishing, 2011).

  72. Belmonte, L., Pechkova, E., Tripathi, S., Scudieri, D. & Nicolini, C. Langmuir-Blodgett nanotemplate and radiation resistance in protein crystals: state of the art. Crit. Rev. Eukaryot. Gene Exp. 22, 219–232 (2012).

    Article  CAS  Google Scholar 

  73. Pechkova, E., Sivozhelezov, V., Tropiano, G., Fiordoro, S. & Nicolini, C. Comparison of lysozyme structures derived from thin-film-based and classical crystals. Acta Cryst. D 61, 803–808 (2005).

    Article  CAS  Google Scholar 

  74. Pechkova, E., Vasile, F., Spera, R., Fiordoro, S. & Nicolini, C. Protein nanocrystallography: growth mechanism and atomic structure of crystals induced by nanotemplate. J. Synchrotron Radiat. 12, 772–778 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Nicolini, C., Belmonte, L., Maksimov, G., Brage, N. & Pechkova, E. In situ monitoring of lysozyme concentration during crystallization in a nanotemplate hanging drop by Raman spectroscopy. J. Microb. Biochem. Technol. 6, 9–16 (2013).

    Article  CAS  Google Scholar 

  76. Pechkova, E. et al. Raman spectroscopy of protein crystal nucleation and growth. Am. J. Biochem. Biotechnol. 10, 202–207 (2014).

    Article  CAS  Google Scholar 

  77. Pechkova, E. et al. LB crystallization and preliminary X-ray diffraction analysis of L-Asparaginase from Rhodospirillum rubrum. NanoWorld J. 3(S1), S2–S8 (2017).

  78. Wright, J.P., Pechkova, E. & Nicolini, C. Synchrotron powder diffraction study of radiation damage in Langmuir-Blodgett nanotemplate crystallised protein. Am. J. Biochem. Biotechnol. 10, 162–168 (2014).

    Article  CAS  Google Scholar 

  79. Pechkova, E., Sivozhelezov, V., Belmonte, L. & Nicolini, C. Unique water distribution of Langmuir-Blodget versus classical crystals. J. Struct. Biol. 180, 57–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Pechkova, E. & Nicolini, C. Domain organization and properties of LB lysozyme crystals down to submicron size. Anticancer Res. 30, 2745–2748 (2010).

    PubMed  Google Scholar 

  81. Nicolini, C., Riekel, C. & Pechkova, E. Growth and organization of Langmuir-Blodgett protein crystals via in situ GISAXS, laser-microdissection, nanodiffraction, Raman spectroscopy and atomic force microscopy. in Synchrotron Radiation and Structural Proteomics Vol 3 (Pan Stanford Series on Nanobiotechnology; eds. E. Pechkova, C. & Riekel, C.) 383–407 (Singapore: Pan Stanford Publishing, 2012).

  82. Pechkova, E. et al. Laser-microdissection of protein crystals down to submicron dimensions. J. Nanomed. Nanotechnol. S15, 002 (2013).

    Google Scholar 

  83. Nicolini, C., Belmonte, L., Riekel, C., Koenig, C. & Pechkova, E. Langmuir-Blodgett nanotemplate crystallization combined to laser-microfragmentation uniquely characterize proteins crystals by synchrotron microdiffraction. Am. J. Biochem. Biotechnol. 10, 22–30 (2014).

    Article  CAS  Google Scholar 

  84. Cusack, S. et al. Small is beautiful: protein micro-crystallography. Nat. Struct. Biol. 5, 634–637 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Riekel, C. New avenues in x-ray microbeam experiments. Rep. Prog. Phys. 63, 233–262 (2000).

    Article  CAS  Google Scholar 

  86. Moukhametzianov, R. et al. Protein crystallography with a micrometre-sized synchrotron-radiation beam. Acta Cryst. D. 64, 158–166 (2008).

    Article  CAS  Google Scholar 

  87. Riekel, C., Burghammer, M. & Schertler, G. Protein crystallography micro-diffraction. Curr. Opin. Struct. Biol. 15, 556–562 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Bozdaganyan, M., Bragazzi, N., Pechkova, E., Shaitan, K. & Nicolini, C. Identification of best protein crystallization methods by molecular dynamics (MD). Crit. Rev. Eukaryot. Gene Exp. 24, 311–324 (2014).

    Article  Google Scholar 

  89. Pechkova, E., Bragazzi, N., Bozdaganyan, M., Belmonte, L. & Nicolini, C. A review of the strategies for obtaining high-quality crystals utilizing nanotechnologies and microgravity. Crit. Rev. Eukaryot. Gene Exp. 24, 325–339 (2014).

    Article  Google Scholar 

  90. Riekel, C., Burghammer, M. & Müller, M. Microbeam small-angle scattering experiments and their combination with microdiffraction. J. Appl. Cryst. 33, 421–423 (2000).

    Article  CAS  Google Scholar 

  91. Yoneda, Y. Anomalous surface reflection of X-rays. Phys. Rev. 161, 2010–2013 (1963).

    Article  Google Scholar 

  92. Henke, B.L., Gullikson, E.M. & Davis, J.C. X-ray interactions: photoabsorption, scattering, transmission and reflection at E=50-30000 eV, Z=1-92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    Article  CAS  Google Scholar 

  93. Nicolini, C., Bragazzi, N., Pechkova, E. & Lazzari, R. Ab initio semi-quantitative analysis of micro-beam grazing-incidence small-angle X-ray scattering (mGISAXS) during protein crystal nucleation and growth. J. Proteomics Bioinform. 7, 064–070 (2014).

    Article  CAS  Google Scholar 

  94. Pechkova, E., Fiordoro, S., Fontani, D. & Nicolini, C. Investigating crystal-growth mechanisms with and without LB template: protein transfer from LB to crystal. Acta Cryst. D. 61, 809–812 (2005).

    Article  CAS  Google Scholar 

  95. Vasile, F., Pechkova, E. & Nicolini, C. Atomic structure of the beta-subunit of the translation initiation factor Aif2 from Archaebacteria Sulfolobus solfataricus: high resolution NMR in solution. Proteins 70, 1112–1115 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a FIRB RBPR05JH2P Nanoitalnet grant on Organic and Biological Nanosensors, financed by the Italian Ministry of Education, Universities and Research (MIUR) to C.N. at the University of Genoa (co-principal investigator E.P.); an International FIRB-MIUR RBIN04RXHS grant together with Harvard University on Functional Proteomics and Cell Cycle Progression to C.N. at the University of Genoa (co-principal investigator E.P.); a FIRB RBNE01X3CE grant on Organic Nanotechnologies and Nanosciences financed by MIUR to Fondazione EL.B.A.; (principal investigator E.P.); a PNR-MIUR grant on Biocatalysis to C.N. at the University of Genoa and Fondazione EL.B.A.; and a yearly MIUR Grant for Functioning to Fondazione EL.B.A.; – Nicolini. The authors are grateful to C. Riekel (ESRF) for a long-lasting collaboration in the microGISAXS experiments.

Author information

Authors and Affiliations

Authors

Contributions

E.P. and C.N. contributed equally to this work. E.P. performed LB-film depositions and crystallization experiments under the supervision of C.N., E.P. prepared samples for synchrotron X-ray crystallography and microGISAXS. The LB nanotemplate-based flow crystallization cell for in situ microGISAXS experiments was designed by E.P. Both authors collected the data, and C.N. performed microGISAXS data analysis. The manuscript was prepared by E.P., with the discussion of LB method state of the art written by C.N.

Corresponding author

Correspondence to Eugenia Pechkova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Cloning, expression and purification of target-membrane protein cytochrome P450scc. (PDF 135 kb)

Langmuir–Blodgett (LB) nanotemplate deposition procedure.

Protein monolayer transfer is achieved by touching the monolayer with the glass slide in parallel to the air–water interface of the LB trough, followed by horizontal lift according to the Langmuir–Schaefer (LS) technique. The slide can be held by forceps or by a cover slide vacuum gadget (Hampton Research, cat. no. HR8-098). (MOV 2826 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pechkova, E., Nicolini, C. Langmuir–Blodgett nanotemplates for protein crystallography. Nat Protoc 12, 2570–2589 (2017). https://doi.org/10.1038/nprot.2017.108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.108

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing