Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear spin effects in semiconductor quantum dots

Abstract

The interaction of an electronic spin with its nuclear environment, an issue known as the central spin problem, has been the subject of considerable attention due to its relevance for spin-based quantum computation using semiconductor quantum dots. Independent control of the nuclear spin bath using nuclear magnetic resonance techniques and dynamic nuclear polarization using the central spin itself offer unique possibilities for manipulating the nuclear bath with significant consequences for the coherence and controlled manipulation of the central spin. Here we review some of the recent optical and transport experiments that have explored this central spin problem using semiconductor quantum dots. We focus on the interaction between 104–106 nuclear spins and a spin of a single electron or valence-band hole. We also review the experimental techniques as well as the key theoretical ideas and the implications for quantum information science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical measurements of nuclear spin effects in quantum dots.
Figure 2: Electrical probing of nuclear spin effects in gate-defined quantum dots.
Figure 3: Dynamic nuclear polarization in optically pumped quantum dots.
Figure 4: Dynamic nuclear polarization in gate-defined quantum dots.
Figure 5: Dynamics of nuclear spins in a gated double-dot structure.
Figure 6: Hole–nuclear spin interaction in optically pumped quantum dots.
Figure 7: Nuclear spin narrowing experiments in gate-defined quantum dots.
Figure 8: Optically detected nuclear magnetic resonance in single quantum dots.

Similar content being viewed by others

References

  1. Petta, J. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    CAS  Google Scholar 

  2. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    CAS  Google Scholar 

  3. Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    CAS  Google Scholar 

  4. Mikkelsen, M. H., Berezovsky, J., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Phys. 3, 770–773 (2007).

    CAS  Google Scholar 

  5. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    CAS  Google Scholar 

  6. De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys. 7, 872–878 (2011).

    CAS  Google Scholar 

  7. Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 703–709 (2011).

    Google Scholar 

  8. Godden, T. M. et al. Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot. Phys. Rev. Lett. 108, 017402 (2012).

    CAS  Google Scholar 

  9. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    CAS  Google Scholar 

  10. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Google Scholar 

  11. Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Google Scholar 

  12. Gammon, D. et al. Nuclear spectroscopy in single quantum dots: Nanoscopic Raman scattering and nuclear magnetic resonance. Science 277, 85–88 (1997).

    Google Scholar 

  13. Abragam, A. The Principles of Nuclear Magnetism (Oxford Univ. Press, 1961).

    Google Scholar 

  14. Meier, F. & Zakharchenya, B. P. (eds) Optical Orientation (Elsevier, 1984).

    Google Scholar 

  15. Taylor, J. M., Marcus, C. M. & Lukin, M. D. Long-lived memory for mesoscopic quantum bits. Phys. Rev. Lett. 90, 206803 (2003).

    CAS  Google Scholar 

  16. Makhonin, M. N. et al. Optically tunable nuclear magnetic resonance in a single quantum dot. Phys. Rev. B 82, 161309 (2010).

    Google Scholar 

  17. Makhonin, M. N. et al. Fast control of nuclear spin polarization in an optically pumped single quantum dot. Nature Mater. 10, 844–848 (2011).

    CAS  Google Scholar 

  18. Takahashi, R., Kono, K., Tarucha, S. & Ono, K. Voltage-selective bidirectional polarization and coherent rotation of nuclear spins in quantum dots. Phys. Rev. Lett. 107, 026602 (2011).

    CAS  Google Scholar 

  19. Chekhovich, E. A. et al. Structural analysis of strained quantum dots using nuclear magnetic resonance. Nature Nanotech. 7, 646–650 (2012).

    CAS  Google Scholar 

  20. Tartakovskii, A. (ed.) Quantum Dots: Optics, Electron Transport and Future Applications (Cambridge Univ. Press, 2012).

    Google Scholar 

  21. Lai, C. W., Maletinsky, P., Badolato, A. & Imamoglu, A. Knight-field-enabled nuclear spin polarization in single quantum dots. Phys. Rev. Lett. 96, 167403 (2006).

    CAS  Google Scholar 

  22. Eble, B. et al. Dynamic nuclear polarization of a single charge-tunable InAs/GaAs quantum dot. Phys. Rev. B 74, 081306 (2006).

    Google Scholar 

  23. Tartakovskii, A. I. et al. Nuclear spin switch in semiconductor quantum dots. Phys. Rev. Lett. 98, 026806 (2007).

    CAS  Google Scholar 

  24. Braun, P-F. et al. Bistability of the nuclear polarization created through optical pumping in InGaAs quantum dots. Phys. Rev. B 74, 245306 (2006).

    Google Scholar 

  25. Urbaszek, B. et al. Efficient dynamical nuclear polarization in quantum dots: Temperature dependence. Phys. Rev. B 76, 201301 (2007).

    Google Scholar 

  26. Koppens, F. H. L., Nowack, K. C. & Vandersypen, L. M. K. Spin echo of a single spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008).

    CAS  Google Scholar 

  27. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

    CAS  Google Scholar 

  28. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys. 7, 109–113 (2010).

    Google Scholar 

  29. De Sousa, R. & Das Sarma, S. Theory of nuclear-induced spectral diffusion: Spin decoherence in phosphorus donors in Si and GaAs quantum dots. Phys. Rev. B 68, 115322 (2003).

    Google Scholar 

  30. Yao, W., Lui, R-B. & Sham, L. J. Restoring coherence lost to a slow interacting mesoscopic spin bath. Phys. Rev. Lett. 98, 077602 (2007).

    Google Scholar 

  31. Shchukin, V. A. & Bimberg, D. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125–1171 (1999).

    CAS  Google Scholar 

  32. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    CAS  Google Scholar 

  33. Chekhovich, E. A. et al. Pumping of nuclear spins by optical excitation of spin-forbidden transitions in a quantum dot. Phys. Rev. Lett. 104, 066804 (2010).

    CAS  Google Scholar 

  34. Bracker, A. S. et al. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots. Phys. Rev. Lett. 94, 047402 (2005).

    CAS  Google Scholar 

  35. Maletinsky, P., Lai, C. W., Badolato, A. & Imamoglu, A. Nonlinear dynamics of quantum dot nuclear spins. Phys. Rev. B 75, 035409 (2007).

    Google Scholar 

  36. Maletinsky, P., Badolato, A. & Imamoglu, A. Dynamics of quantum dot nuclear spin polarization controlled by a single electron. Phys. Rev. Lett. 99, 056804 (2007).

    CAS  Google Scholar 

  37. Chekhovich, E. A., Krysa, A. B., Skolnick, M. S. & Tartakovskii, A. I. Direct measurement of the hole–nuclear spin interaction in single InP/GaInP quantum dots using photoluminescence spectroscopy. Phys. Rev. Lett. 106, 027402 (2011).

    CAS  Google Scholar 

  38. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Phys. 5, 758–763 (2009).

    CAS  Google Scholar 

  39. Fallahi, P., Yilmaz, S. T. & Imamoglu, A. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence. Phys. Rev. Lett. 105, 257402 (2010).

    CAS  Google Scholar 

  40. Oulton, R. et al. Subsecond spin relaxation times in quantum dots at zero applied magnetic field due to a strong electron-nuclear interaction. Phys. Rev. Lett. 98, 107401 (2007).

    CAS  Google Scholar 

  41. Greilich, A. et al. Nuclei-induced frequency focusing of electron spin coherence. Science 317, 1896–1899 (2007).

    CAS  Google Scholar 

  42. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    CAS  Google Scholar 

  43. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    CAS  Google Scholar 

  44. Bluhm, H., Foletti, S., Mahalu, D., Umansky, V. & Yacoby, A. Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. Phys. Rev. Lett. 105, 216803 (2010).

    Google Scholar 

  45. Vink, I. et al. Locking electron spins into magnetic resonance by electron–nuclear feedback. Nature Phys. 5, 764–768 (2009).

    CAS  Google Scholar 

  46. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    CAS  Google Scholar 

  47. Laird, E. A. et al. Hyperfine-mediated gate-driven electron spin resonance. Phys. Rev. Lett. 99, 246601 (2007).

    CAS  Google Scholar 

  48. Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    CAS  Google Scholar 

  49. Petta, J. R. et al. Dynamic nuclear polarization with single electron spins. Phys. Rev. Lett. 100, 067601 (2008).

    CAS  Google Scholar 

  50. Reilly, D., Marcus, C., Hanson, M. & Gossard, A. Fast single-charge sensing with a rf quantum point contact. Appl. Phys. Lett. 91, 162101 (2007).

    Google Scholar 

  51. Barthel, C., Reilly, D., Marcus, C., Hanson, M. & Gossard, A. Rapid single-shot measurement of a singlet–triplet qubit. Phys. Rev. Lett. 103, 160503 (2009).

    CAS  Google Scholar 

  52. Baugh, J., Kitamura, Y., Ono, K. & Tarucha, S. Large nuclear Overhauser fields detected in vertically coupled double quantum dots. Phys. Rev. Lett. 99, 096804 (2007).

    Google Scholar 

  53. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Phys. 5, 903–908 (2009).

    CAS  Google Scholar 

  54. Brown, S. W., Kennedy, T. A., Gammon, D. & Snow, E. S. Spectrally resolved Overhauser shifts in single GaAs/AlGaAs quantum dots. Phys. Rev. B 54, R17339–R17342 (1996).

    CAS  Google Scholar 

  55. Kloeffel, C. et al. Controlling the interaction of electron and nuclear spins in a tunnel-coupled quantum dot. Phys. Rev. Lett. 106, 046802 (2011).

    CAS  Google Scholar 

  56. Dyakonov, M. I. (ed.) Spin Physics in Semiconductors (Springer, 2008).

    Google Scholar 

  57. Makhonin, M. N. et al. Nuclear spin pumping under resonant optical excitation in a quantum dot. Appl. Phys. Lett. 93, 073113 (2008).

    Google Scholar 

  58. Klotz, F. et al. Asymmetric optical nuclear spin pumping in a single uncharged quantum dot. Phys. Rev. B 82, 121307 (2010).

    Google Scholar 

  59. Korenev, V. L. Nuclear spin nanomagnet in an optically excited quantum dot. Phys. Rev. Lett. 99, 256405 (2007).

    CAS  Google Scholar 

  60. Latta, C., Srivastava, A. & Imamoğlu, A. Hyperfine interaction-dominated dynamics of nuclear spins in self-assembled InGaAs quantum dots. Phys. Rev. Lett. 107, 167401 (2011).

    Google Scholar 

  61. Chekhovich, E. A. et al. Dynamics of optically induced nuclear spin polarization in individual InP/GaInP quantum dots. Phys. Rev. B 81, 245308 (2010).

    Google Scholar 

  62. Makhonin, M. N. et al. Long nuclear spin polarization decay times controlled by optical pumping in individual quantum dots. Phys. Rev. B 77, 125307 (2008).

    Google Scholar 

  63. Nikolaenko, A. E. et al. Suppression of nuclear spin diffusion at a GaAs/AlGaAs interface measured with a single quantum-dot nanoprobe. Phys. Rev. B 79, 081303 (2009).

    Google Scholar 

  64. Dzhioev, R. I. & Korenev, V. L. Stabilization of the electron–nuclear spin orientation in quantum dots by the nuclear quadrupole interaction. Phys. Rev. Lett. 99, 037401 (2007).

    CAS  Google Scholar 

  65. Maletinsky, P., Kroner, M. & Imamoglu, A. Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments. Nature Phys. 5, 407–411 (2009).

    CAS  Google Scholar 

  66. Bulutay, C. Quadrupolar spectra of nuclear spins in strained InxGa1− xAs quantum dots. Phys. Rev. B 85, 115313 (2012).

    Google Scholar 

  67. Belhadj, T. et al. Controlling the polarization eigenstate of a quantum dot exciton with light. Phys. Rev. Lett. 103, 086601 (2009).

    Google Scholar 

  68. Ono, K. & Tarucha, S. Nuclear-spin-induced oscillatory current in spin-blockaded quantum dots. Phys. Rev. Lett. 92, 256803 (2004).

    Google Scholar 

  69. Koppens, F. H. L. et al. Control and detection of singlet–triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005).

    CAS  Google Scholar 

  70. Rudner, M. S. & Levitov, L. S. Electrically driven reverse Overhauser pumping of nuclear spins in quantum dots. Phys. Rev. Lett. 99, 246602 (2007).

    CAS  Google Scholar 

  71. Rudner, M. S., Koppens, F. H. L., Folk, J. A., Vandersypen, L. M. K. & Levitov, L. S. Nuclear spin dynamics in double quantum dots: Fixed points, transients, and intermittency. Phys. Rev. B 84, 075339 (2011).

    Google Scholar 

  72. Danon, J. et al. Multiple nuclear polarization states in a double quantum dot. Phys. Rev. Lett. 103, 046601 (2009).

    CAS  Google Scholar 

  73. Cywiński, L., Witzel, W. M. & Das Sarma, S. Electron spin dephasing due to hyperfine interactions with a nuclear spin bath. Phys. Rev. Lett. 102, 057601 (2009).

    Google Scholar 

  74. Coish, W. A., Fischer, J. & Loss, D. Exponential decay in a spin bath. Phys. Rev. B 77, 125329 (2008).

    Google Scholar 

  75. Reilly, D. J. et al. Measurement of temporal correlations of the Overhauser field in a double quantum dot. Phys. Rev. Lett. 101, 236803 (2008).

    CAS  Google Scholar 

  76. Reilly, D. et al. Exchange control of nuclear spin diffusion in a double quantum dot. Phys. Rev. Lett. 104, 236802 (2010).

    CAS  Google Scholar 

  77. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580 (1950).

    Google Scholar 

  78. Witzel, W. M. & Das Sarma, S. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B 74, 035322 (2006).

    Google Scholar 

  79. Yao, W., Lui, R-B. & Sham, L. J. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006).

    Google Scholar 

  80. Heiss, D. et al. Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B 76, 241306 (2007).

    Google Scholar 

  81. Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

    CAS  Google Scholar 

  82. Gryncharova, E. I. & Perel, V. I. Relaxation of nuclear spins interacting with holes in semiconductors. Sov. Phys. Semicond. 11, 997 (1977).

    Google Scholar 

  83. Testelin, C., Bernardot, F., Eble, B. & Chamarro, M. Hole–spin dephasing time associated with hyperfine interaction in quantum dots. Phys. Rev. B 79, 195440 (2009).

    Google Scholar 

  84. Fischer, J., Coish, W. A., Bulaev, D. V. & Loss, D. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).

    Google Scholar 

  85. Eble, B. et al. Hole–nuclear spin interaction in quantum dots. Phys. Rev. Lett. 102, 146601 (2009).

    CAS  Google Scholar 

  86. Chekhovich, E. A. et al. Element-sensitive measurement of the hole–nuclear spin interaction in quantum dots. Nature Phys. 9, 74–78 (2013).

    CAS  Google Scholar 

  87. Desfonds, P. et al. Electron and hole spin cooling efficiency in InAs quantum dots: The role of nuclear field. Appl. Phys. Lett. 96, 172108 (2010).

    Google Scholar 

  88. Li, Y. et al. Intrinsic spin fluctuations reveal the dynamical response function of holes coupled to nuclear spin baths in (In, Ga)As quantum dots. Phys. Rev. Lett. 108, 186603 (2012).

    Google Scholar 

  89. Glazov, M. M., Yugova, I. A. & Efros, A. L. Electron spin synchronization induced by optical nuclear magnetic resonance feedback. Phys. Rev. B 85, 041303 (2012).

    Google Scholar 

  90. Reilly, D. J. et al. Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817–821 (2008).

    CAS  Google Scholar 

  91. Ribeiro, H. & Burkard, G. Nuclear state preparation via Landau–Zener–Stuckelberg transitions in double quantum dots. Phys. Rev. Lett. 102, 216802 (2009).

    Google Scholar 

  92. Barthel, C. et al. Relaxation and readout visibility of a singlet–triplet qubit in an Overhauser field gradient. Phys. Rev. B 85, 035306 (2012).

    Google Scholar 

  93. Flisinski, K. et al. Optically detected magnetic resonance at the quadrupole-split nuclear states in In-GaAs/GaAs quantum dots. Phys. Rev. B 82, 081308 (2010).

    Google Scholar 

  94. Cherbunin, R. V. et al. Resonant nuclear spin pumping in InGaAs quantum dots. Phys. Rev. B 84, 041304 (2011).

    Google Scholar 

  95. Krebs, O. et al. Anomalous Hanle effect due to optically created transverse Overhauser field in single InAs/GaAs quantum dots. Phys. Rev. Lett. 104, 056603 (2010).

    CAS  Google Scholar 

  96. Simon, P., Braunecker, B. & Loss, D. Magnetic ordering of nuclear spins in an interacting two-dimensional electron gas. Phys. Rev. B 77, 045108 (2008).

    Google Scholar 

  97. Kondo, Y. et al. Multipulse operation and optical detection of nuclear spin coherence in a GaAs/AlGaAs quantum well. Phys. Rev. Lett. 101, 207601 (2008).

    CAS  Google Scholar 

  98. Rudner, M. S., Vandersypen, L. M. K., Vuletic, V. & Levitov, L. S. Generating entanglement and squeezed states of nuclear spins in quantum dots. Phys. Rev. Lett. 107, 206806 (2011).

    CAS  Google Scholar 

  99. Kessler, E. M. et al. Dissipative phase transition in a central spin system. Phys. Rev. A 86, 012116 (2012).

    Google Scholar 

  100. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    CAS  Google Scholar 

  101. Sørensen, A. S. & Mølmer, K. Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431–4434 (2001).

    Google Scholar 

  102. Gullans, M. et al. Dynamic nuclear polarization in double quantum dots. Phys. Rev. Lett. 104, 226807 (2010).

    CAS  Google Scholar 

  103. Schuetz, M. J. A., Kessler, E. M., Cirac, J. I. & Giedke, G. Superradiance-like electron transport through a quantum dot. Phys. Rev. B 86, 085322 (2012).

    Google Scholar 

  104. Kessler, E. M., Yelin, S., Lukin, M. D., Cirac, J. I. & Giedke, G. Optical superradiance from nuclear spin environment of single-photon emitters. Phys. Rev. Lett. 104, 143601 (2010).

    CAS  Google Scholar 

  105. Kuemmeth, F., Churchill, H. O. H., Herring, P. K. & Marcus, C. M. Carbon nanotubes for coherent spintronics. Mater. Today 13, 18–26 (March, 2010).

    CAS  Google Scholar 

  106. Abe, E. et al. Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei. Phys. Rev. B 82, 121201 (2010).

    Google Scholar 

  107. Morton, J. J. L. et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008).

    CAS  Google Scholar 

  108. Shaji, N. et al. Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot. Nature Phys. 4, 540–544 (2008).

    CAS  Google Scholar 

  109. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Google Scholar 

  110. Pfund, A., Shorubalko, I., Ensslin, K. & Leturcq, R. Spin state mixing in InAs double quantum dots. Phys. Rev. B 76, 161308(R) (2007).

    Google Scholar 

  111. Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

E.A.C., M.N.M. and A.I.T. acknowledge support by the EPSRC Programme grants (EP/G001642/1 and EP/J007544/1), ITN Spin-Optronics and the Royal Society. A.Y. acknowledges support by IARPA. L.M.K.V. acknowledges support by a European Research Council starting grant, the Dutch Foundation for Fundamental Research on Matter (FOM), and the Office of the Director of National Intelligence, Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office grant W911NF-12-1-0354. H. B. thanks the Alfried Krupp von Bohlen und Halbach Foundation. K.C.N. acknowledges support from the Center for Probing the Nanoscale, an NSF NSEC, supported under grant no. PHY-0830228, and from NSF grant no. DMR-0803974.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Tartakovskii.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chekhovich, E., Makhonin, M., Tartakovskii, A. et al. Nuclear spin effects in semiconductor quantum dots. Nature Mater 12, 494–504 (2013). https://doi.org/10.1038/nmat3652

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3652

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing