Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoelectrical analysis of single molecules and atomic-scale materials at the solid/liquid interface

Abstract

Evaluating the built-in functionality of nanomaterials under practical conditions is central for their proposed integration as active components in next-generation electronics. Low-dimensional materials from single atoms to molecules have been consistently resolved and manipulated under ultrahigh vacuum at low temperatures. At room temperature, atomic-scale imaging has also been performed by probing materials at the solid/liquid interface. We exploit this electrical interface to develop a robust electronic decoupling platform that provides precise information on molecular energy levels recorded using in situ scanning tunnelling microscopy/spectroscopy with high spatial and energy resolution in a high-density liquid environment. Our experimental findings, supported by ab initio electronic structure calculations and atomic-scale molecular dynamics simulations, reveal direct mapping of single-molecule structure and resonance states at the solid/liquid interface. We further extend this approach to resolve the electronic structure of graphene monolayers at atomic length scales under standard room-temperature operating conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C60 dynamics on organic spacer-coated Au(111) in silicone oil.
Figure 2: C60 energy levels on n-C30H62-coated Au(111).
Figure 3: Molecular dynamics and electronic structure of functionalized C60 on n-C30H62 coated Au(111).
Figure 4: Atom-scale mapping of graphene electronic structure.

Similar content being viewed by others

References

  1. De Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).

    Article  CAS  Google Scholar 

  2. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    CAS  Google Scholar 

  3. Repp, J., Meyer, G., Stojkovic, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Google Scholar 

  4. Shin, H. J. et al. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Mater. 9, 442–447 (2010).

    CAS  Google Scholar 

  5. Rabe, J. P. Molecules at interfaces: STM in materials and life sciences. Ultramicroscopy 42–44, 41–54 (1992).

    Google Scholar 

  6. Uji, I. H. et al. Scanning tunneling microscopy and spectroscopy of donor–acceptor–donor triads at the liquid/solid interface. ChemPhysChem 6, 2389–2395 (2005).

    Google Scholar 

  7. De Feyter, S. & De Schryver, F. C. Self-assembly at the liquid/solid interface: STM reveals. J. Phys. Chem. 109, 4290–4302 (2005).

    CAS  Google Scholar 

  8. Hulsken, B. et al. Real-time single-molecule imaging of oxidation catalysis at a liquid–solid interface. Nature Nanotech. 2, 285–289 (2007).

    CAS  Google Scholar 

  9. Sonnenfeld, R. & Hansma, P. K. Atomic-resolution microscopy in water. Science 232, 211–213 (1986).

    CAS  Google Scholar 

  10. Itaya, K., Sugawara, S. & Higaki, K. In situ scanning tunneling microscopy for platinum surfaces in aqueous solutions. J. Phys. Chem. 92, 6714–6718 (1988).

    CAS  Google Scholar 

  11. Giambattista, B. et al. Atomic resolution images of solid–liquid interfaces. Proc. Natl Acad. Sci. USA 84, 4671–4674 (1987).

    CAS  Google Scholar 

  12. De Feyter, S., Xu, H. & Mali, K. Dynamics in self-assembled organic monolayers at the liquid/solid interface revealed by scanning tunneling microscopy. Chimia 66, 38–43 (2012).

    CAS  Google Scholar 

  13. Katsonis, N., Marchenko, A. & Fichou, D. Dynamics and spectroscopy of single C60 molecules adsorbed on Au(111) at the liquid–solid interface. J. Photochem. Photobiol. A 158, 101–104 (2003).

    CAS  Google Scholar 

  14. Rabe, J. P. & Buchholz, S. Direct observation of molecular structure and dynamics at the interface between a solid wall and an organic solution by scanning tunneling microscopy. Phys. Rev. Lett. 66, 2096–2099 (1991).

    CAS  Google Scholar 

  15. Den Boer, D. et al. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nature Chem. 5, 621–627 (2013).

    CAS  Google Scholar 

  16. Ciesielski, A., Palma, C. A., Bonini, M. & Samori, P. Towards supramolecular engineering of functional nanomaterials: Pre-programming multi-component 2D self-assembly at solid–liquid interfaces. Adv. Mater. 22, 3506–3520 (2010).

    CAS  Google Scholar 

  17. Elemans, J. A. A. W. & De Feyter, S. Structure and function revealed with submolecular resolution at the liquid-solid interface. Soft Matter 5, 721–735 (2009).

    CAS  Google Scholar 

  18. Samori, P. et al. Supramolecular staircase via self-assembly of disklike molecules at the solid–liquid interface. J. Am. Chem. Soc. 123, 11462–11467 (2001).

    CAS  Google Scholar 

  19. Jackel, F., Watson, M. D., Mullen, K. & Rabe, J. P. Prototypical single-molecule chemical-field-effect transistor with nanometer-sized gates. Phys. Rev. Lett. 92, 188303 (2004).

    CAS  Google Scholar 

  20. Albrecht, T. et al. Scanning tunneling spectroscopy in an ionic liquid. J. Am. Chem. Soc. 128, 6574–6575 (2006).

    CAS  Google Scholar 

  21. Moth-Poulsen, K. & Bjornholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotech. 4, 551–556 (2009).

    CAS  Google Scholar 

  22. Gopakumar, T. G. et al. Coverage-driven electronic decoupling of Fe-phthalocyanine from a Ag(111) substrate. J. Phys. Chem. C 115, 12173–12179 (2011).

    CAS  Google Scholar 

  23. Gross, L. Recent advances in submolecular resolution with scanning probe microscopy. Nature Chem. 3, 273–278 (2011).

    CAS  Google Scholar 

  24. Nirmalraj, P. N., Schmid, H., Gotsmann, B. & Riel, H. Nanoscale origin of defects at metal/molecule engineered interfaces. Langmuir 29, 1340–1345 (2013).

    CAS  Google Scholar 

  25. Zhang, H-M., Xie, Z-X., Mao, B-W. & Xu, X. Self-assembly of normal alkanes on the Au (111) surfaces. Chem. Eur. J. 10, 1415–1422 (2004).

    CAS  Google Scholar 

  26. Marchenko, O. & Cousty, J. Molecule length-induced reentrant self-organization of alkanes in monolayers adsorbed on Au(111). Phys. Rev. Lett. 84, 5363–5366 (2000).

    CAS  Google Scholar 

  27. Nerngchamnong, N. et al. The role of van der Waals forces in the performance of molecular diodes. Nature Nanotech. 8, 113–118 (2013).

    CAS  Google Scholar 

  28. Akari, S. et al. Anomalous voltage dependence of tunnelling microscopy in WSe2 . J. Microsc. 152, 521–526 (1988).

    CAS  Google Scholar 

  29. Marchenko, A. & Cousty, J. C60 self-organization at the interface between a liquid C60 solution and a Au(111) surface. Surf. Sci. 513, 233–237 (2002).

    CAS  Google Scholar 

  30. Weckesser, J., Barth, J. V. & Kern, K. Mobility and bonding transition of C60 on Pd(110). Phys. Rev. B 64, 161403 (2001).

    Google Scholar 

  31. Heinz, H., Vaia, R. A., Farmer, B. L. & Naik, R. R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 Lennard-Jones potentials. J. Phys. Chem. 112, 17281–17290 (2008).

    CAS  Google Scholar 

  32. Grill, L. Functionalized molecules studied by STM: Motion, switching and reactivity. J. Phys. Condens. Matter 20, 053001 (2008).

    Google Scholar 

  33. Neel, N. et al. Controlled contact to a C60 molecule. Phys. Rev. Lett. 98, 065502 (2007).

    CAS  Google Scholar 

  34. Griessl, S. J. H. et al. Room-temperature scanning tunneling microscopy manipulation of single C60 molecules at the liquid–solid interface: Playing nanosoccer. J. Phys. Chem. B 108, 11556–11560 (2004).

    CAS  Google Scholar 

  35. Lu, J. et al. Using the graphene Moiré pattern for the trapping of C60 and homoepitaxy of graphene. ACS Nano 6, 944–950 (2011).

    Google Scholar 

  36. Nikolai Severin, J. B., Alexey, A. K. & Jurgen, P. R. Manipulation and overstretching of genes on solid substrates. Nano Lett. 4, 577–579 (2004).

    Google Scholar 

  37. Wang, Y., Kroger, J., Berndt, R. & Tang, H. Molecular nanocrystals on ultrathin NaCl films on Au(111). J. Am. Chem. Soc. 132, 12546–12547 (2010).

    CAS  Google Scholar 

  38. Franke, K. J. et al. Reducing the molecule–substrate coupling in C60-based nanostructures by molecular interactions. Phys. Rev. Lett. 100, 036807 (2008).

    CAS  Google Scholar 

  39. Bilan, S., Zotti, L. A., Pauly, F. & Cuevas, J. C. Theoretical study of the charge transport through C60-based single-molecule junctions. Phys. Rev. B 85, 205403 (2012).

    Google Scholar 

  40. Néel, N. et al. Controlled contact to a C60 molecule. Phys. Rev. Lett. 98, 065502 (2007).

    Google Scholar 

  41. Franke, K. J. & Pascual, J. I. Effects of electron–vibration coupling in transport through single molecules. J. Phys. Condens. Matter 24, 394002 (2012).

    Google Scholar 

  42. Lu, X., Grobis, M., Khoo, K. H., Louie, S. G. & Crommie, M. F. Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study. Phys. Rev. B 70, 115418 (2004).

    Google Scholar 

  43. Martin, C. A. et al. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 13198–13199 (2008).

    CAS  Google Scholar 

  44. Lortscher, E. et al. Bonding and electronic transport properties of fullerene and fullerene derivatives in break-junction geometries. Small 9, 209–214 (2013).

    Google Scholar 

  45. Markussen, T., Settnes, M. & Thygesen, K. S. Robust conductance of dumbbell molecular junctions with fullerene anchoring groups. J. Chem. Phys. 135, 144104–144106 (2011).

    Google Scholar 

  46. Nirmalraj, P. N., Lutz, T., Kumar, S., Duesberg, G. S. & Boland, J. J. Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Lett. 11, 16–22 (2011).

    CAS  Google Scholar 

  47. Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

    CAS  Google Scholar 

  48. Ugeda, M. M. et al. Point defects on graphene on metals. Phys. Rev. Lett. 107, 116803 (2011).

    CAS  Google Scholar 

  49. Zheng, J. et al. Interfacial properties of bilayer and trilayer graphene on metal substrates. Sci. Rep. 3, 2081 (2013).

    Google Scholar 

  50. Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2010).

    Google Scholar 

  51. Cho, J. et al. Structural and electronic decoupling of C60 from epitaxial graphene on SiC. Nano Lett. 12, 3018–3024 (2012).

    CAS  Google Scholar 

  52. Luican, A., Li, G. & Andrei, E. Y. Quantized Landau level spectrum and its density dependence in graphene. Phys. Rev. B 83, 041405 (2011).

    Google Scholar 

  53. Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924–927 (2009).

    CAS  Google Scholar 

  54. Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    CAS  Google Scholar 

  55. Schull, G., Frederiksen, T., Brandbyge, M. & Berndt, R. Passing current through touching molecules. Phys. Rev. Lett. 103, 206803 (2009).

    Google Scholar 

Download references

Acknowledgements

The authors thank R. Stutz and H. Schmid for metal-deposition experiments, M. Tschudy for liquid-cell fabrication and E. Lörtscher for designing the noise-free laboratories. P.N. thanks H. Wolf, F. Schwarz and J. Boland for useful discussions. This work was supported by the Marie Curie Actions-Intra-European Fellowship (IEF-PHY) under grant agreement No 275074 ‘To Come’ within the 7th European Community Framework Programme. D.T. thanks Science Foundation Ireland (SFI) for financial support under Grant Number 11/SIRG/B2111 and the SFI/Higher Education Authority Irish Center for High-End Computing (ICHEC). This work was supported by the EC FP7ITN ‘FUNMOLS’ Project Number: PITN-GA-2008-212942.

Author information

Authors and Affiliations

Authors

Contributions

P.N. designed and performed the in situ STM/STS experiments. M.S. carried out the ellipsometry measurements and data analysis. A.M-O. and N.M. synthesized the functionalized C60 molecules and performed the electrochemical characterization. D.T. designed and performed the molecular dynamics simulations and DFT calculations. All authors contributed and commented on the manuscript and analysis of the data.

Corresponding author

Correspondence to Peter Nirmalraj.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirmalraj, P., Thompson, D., Molina-Ontoria, A. et al. Nanoelectrical analysis of single molecules and atomic-scale materials at the solid/liquid interface. Nature Mater 13, 947–953 (2014). https://doi.org/10.1038/nmat4060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing