Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chk2 activates E2F-1 in response to DNA damage

Abstract

The E2F-1 transcription factor is regulated during cell cycle progression and induced by cellular stress, such as DNA damage. We report that checkpoint kinase 2 (Chk2) regulates E2F-1 activity in response to the DNA-damaging agent etoposide. A Chk2 consensus phosphorylation site in E2F-1 is phosphorylated in response to DNA damage, resulting in protein stabilization, increased half-life, transcriptional activation and localization of phosphorylated E2F-1 to discrete nuclear structures. Expression of a dominant-negative Chk2 mutant blocks induction of E2F-1 and prevents E2F-1-dependent apoptosis. Moreover, E2F-1 is resistant to induction by etoposide in tumour cells expressing mutant chk2. Therefore, Chk2 phosphorylates and activates E2F-1 in response to DNA damage, resulting in apoptosis. These results suggest a role for E2F-1 in checkpoint control and provide a plausible explanation for the tumour suppressor activity of E2F-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E2F-1 is stabilised after DNA damage and requires Chk2 kinase.
Figure 2: Chk2 phosphorylates E2F-1 on Ser 364 in vitro.
Figure 3: E2F-1 is phosphorylated on Ser 364 in vivo.
Figure 4: Dependence on Ser 364 for E2F-1 stabilisation in response to DNA damage.
Figure 5: Role of Chk2 in the stabilisation of E2F-1 after DNA damage.
Figure 6: Localization of E2F-1-Ser 364-P in normal cells.
Figure 7: Detection of E2F-1-Ser 364-P in etoposide-treated cells.
Figure 8: Apoptosis and cell cycle arrest through E2F-1 requires Chk2.

Similar content being viewed by others

References

  1. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Sherr, C.J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Trimarchi, J.M. & Lees, J.A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).

    Article  CAS  Google Scholar 

  4. Field, S.J. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549–561 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Yamasaki, L. et al. Tumour induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–547 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, G., Livingston, D.M. & Krek, W. Multiple members of the E2F transcription factor family are the products of oncogenes. Proc. Natl Acad. Sci. USA 92, 357–1361 (1995).

    Google Scholar 

  7. Wu., L. et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414, 457–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Qin, X.Q., Livingston, D.M., Kaelin, W.G. Jr & Adams, P.D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91, 10918–10922 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shan, B. & Lee, W.H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell Biol. 14, 8166–8173 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, X. & Levine, A.J. P53 and E2F-1 co-operate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DeGregori, J., Leone, G., Miron, A., Jakoi, L. & Nevins, J.R. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl Acad. Sci. USA 94, 7245–7250 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bates, S. et al. p14ARF links the tumour suppressor RB and p53. Nature 395, 124–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Sherr, C.J. Tumour surveillance via the ARF–p53 pathway. Genes Dev. 12, 2984–2991 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lissy, N.A., Davis, P.K., Irwin, M., Kaelin, W.G. & Dowdy, S.F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Stiewe, T. & Putzer, B.M. Role of the p53 homologue p73 in E2F-1-induced apoptosis. Nature Genet. 26, 464–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Moroni, M.C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Loughran, Ö. & La Thangue, N.B. Apoptotic and growth-promoting activity of E2F modulated by MDM2. Mol. Cell. Biol. 20, 2186–2197 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blattner, C., Sparks, A., & Lane, D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol. Cell Biol. 19, 3704–3713 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, W.C., Lin, F.T. & Nevins, J.R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15, 1833–1844 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Durocher, D. & Jackson, S.P. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr. Opin. Cell Biol. 13, 225–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Chehab, N.H., Malikzay, A., Appel, M. & Halazonetis, T.D. Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 14, 278–288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Sheih, S.Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologues of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylates p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000).

    Google Scholar 

  25. Falck, J., Maitland, N., Syljuåsen, R.G., Bartek, J. & Lukas, J. The ATM–chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Peng, C.-Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S. & Piwnica-Worms, H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, J.-S., Collins, K.M., Brown, A.L., Lee, C.-H. & Chung, J.H. HCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, S., Kuo, C., Bisi, J.E. & Kim, M.K. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nature Cell Biol. 4, 865–870 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Takai, H. et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO. J. 21, 5195–5205 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Botz, J. et al. Cell cycle regulation of the murine cyclinE gene depends on an E2F binding site in the promoter. Mol. Cell. Biol. 16, 3401–3409 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bell, D.W. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Falck, J. et al. Functional impact of concomitant versus alternative defects in the Chk2–p53 tumour suppressor pathway. Oncogene 20, 5505–5510 (2001).

    Article  Google Scholar 

  33. Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl Acad. Sci. 97, 10389–10394 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson, D.G., Schwartz, J.K., Cress, W.D. & Nevins, J. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365, 349–352 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Johnson, D.G., Cress, W.D., Jakol, L. & Nevins, J.R. Oncogenic capacity of the E2F1 gene. Proc. Natl Acad. Sci. USA. 91, 12823–12827 (1996).

    Article  Google Scholar 

  36. Lucas, J., Petersen, B.O., Holm, K., Bartek, J. & Helin, K. Deregulated expression of E2F family members induces S-phase entry and overcome p16INK4A-mediated growth suppression. Mol. Cell. Biol. 16, 1047–1057 (1996).

    Article  Google Scholar 

  37. Yamasaki, L. et al. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−) mice. Nature Genet. 18, 360–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Lakin, N.D. & Jackson, S.P. Regulation of p53 in response to DNA damage. Oncogene 18, 7644–7655 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Koh, L. & Prives, C. P53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).

    Article  Google Scholar 

  41. Agami, R. & Bernards, R. Distinct initiation and maintenance mechanisms co-operate to induce G1 cell cycle arrest in response to DNA damage. Cell 102, 55–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Allen, K.E., de la Luna, S., Kerkhoven, R.M., Bernards, R. & La Thangue, N.B. Distinct mechanisms of nuclear accumulation regulate the functional consequence of E2F transcription factors. J. Cell Sci. 110, 2819–2831 (1997).

    CAS  PubMed  Google Scholar 

  43. Bandara, L.R., Buck, V.M., Zamanian, M., Johnston, L.H. & La Thangue, N.B. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF/E2F. EMBO J. 12, 4317–4324 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morris, L., Allen, K.E. & La Thangue, N.B. Regulation of E2F transcription by cyclinE/cdk2 kinase mediated through p300/CBP co-activators. Nature Cell Biol. 12, 232–239 (2000).

    Article  Google Scholar 

  45. de la Luna, S., Allen, K.E., Mason, S.M. & La Thangue, N.B. Integration of a growth-suppressing BTB/POZ domain protein with the DP component of the E2F transcription factor. EMBO J. 18, 212–228 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chan, H.-M., Kristic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N.B. Acetylation control of the retinoblastoma tumour-suppressor protein. Nature Cell Biol. 3, 667–674 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Zhu and T. Halazonetis for materials. This work was supported by the Leukaemia Research Fund (C.S.) and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas B. La Thangue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Figure S1 Purification and specificity of phospho-specific anti-P-S364. (PDF 48 kb)

Figure S2 Recombinant E2F-1 or S364A (1µg) was incubated with recombinant Chk2 as indicated, in the presence of either the phosphorylated (track 5) or nonphosphorylated (track 6) S364 peptide (about 2µg).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, C., Smith, L. & La Thangue, N. Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5, 401–409 (2003). https://doi.org/10.1038/ncb974

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb974

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing