Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CLASPs prevent irreversible multipolarity by ensuring spindle-pole resistance to traction forces during chromosome alignment

Abstract

Loss of spindle-pole integrity during mitosis leads to multipolarity independent of centrosome amplification1,2,3,4. Multipolar-spindle conformation favours incorrect kinetochore–microtubule attachments, compromising faithful chromosome segregation and daughter-cell viability5,6. Spindle-pole organization influences and is influenced by kinetochore activity7,8, but the molecular nature behind this critical force balance is unknown. CLASPs are microtubule-, kinetochore- and centrosome-associated proteins whose functional perturbation leads to three main spindle abnormalities: monopolarity, short spindles and multipolarity9,10,11,12,13. The first two reflect a role at the kinetochore–microtubule interface through interaction with specific kinetochore partners10,11,14, but how CLASPs prevent spindle multipolarity remains unclear. Here we found that human CLASPs ensure spindle-pole integrity after bipolarization in response to CENP-E- and Kid-mediated forces from misaligned chromosomes. This function is independent of end-on kinetochore–microtubule attachments and involves the recruitment of ninein to residual pericentriolar satellites. Distinctively, multipolarity arising through this mechanism often persists through anaphase. We propose that CLASPs and ninein confer spindle-pole resistance to traction forces exerted during chromosome congression, thereby preventing irreversible spindle multipolarity and aneuploidy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CLASP1/2 depletion causes the formation of multipolar spindles.
Figure 2: CLASPs ensure spindle-pole integrity independently of forces relying on end-on kinetochore–microtubule attachments.
Figure 3: Loss of spindle-pole integrity in the absence of CLASPs is preceded by the presence of misaligned chromosomes with unattached kinetochores.
Figure 4: CENP-E-mediated traction forces on misaligned chromosomes are responsible for the irreversible loss of spindle-pole integrity in CLASP1/2-depleted cells.
Figure 5: CLASPs ensure spindle-pole integrity through a functional relationship with ninein.

Similar content being viewed by others

References

  1. Brenner, S., Branch, A., Meredith, S. & Berns, M. W. The absence of centrioles from spindle poles of rat kangaroo (PtK2) cells undergoing meiotic-like reduction division in vitro. J. Cell Biol. 72, 368–379 (1977).

    Article  CAS  Google Scholar 

  2. Gergely, F., Draviam, V. M. & Raff, J. W. The ch-TOG/XMAP215 protein is essentialfor spindle pole organization in human somatic cells. Genes Dev. 17, 336–341 (2003).

    Article  CAS  Google Scholar 

  3. Cassimeris, L. & Morabito, J. TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly. Mol. Biol. Cell 15, 1580–1590 (2004).

    Article  CAS  Google Scholar 

  4. Keryer, G., Ris, H. & Borisy, G. G. Centriole distribution during tripolar mitosis in Chinese hamster ovary cells. J. Cell Biol. 98, 2222–2229 (1984).

    Article  CAS  Google Scholar 

  5. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  Google Scholar 

  6. Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE 4, e6564 (2009).

    Article  Google Scholar 

  7. Gordon, M. B., Howard, L. & Compton, D. A. Chromosome movement inmitosis requires microtubule anchorage at spindle poles. J. Cell Biol. 152, 425–434 (2001).

    Article  CAS  Google Scholar 

  8. Manning, A. L. & Compton, D. A. Mechanisms of spindle-pole organization are influenced by kinetochore activity in mammalian cells. Curr. Biol. 17, 260–265 (2007).

    Article  CAS  Google Scholar 

  9. Maiato, H. et al. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113, 891–904 (2003).

    Article  CAS  Google Scholar 

  10. Maiato, H., Khodjakov, A. & Rieder, C. L. Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nat. Cell Biol. 7, 42–47 (2005).

    Article  CAS  Google Scholar 

  11. Maffini, S. et al. Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux. Curr. Biol. 19, 1566–1572 (2009).

    Article  CAS  Google Scholar 

  12. Pereira, A. L. et al. Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function. Mol. Biol. Cell 17, 4526–4542 (2006).

    Article  CAS  Google Scholar 

  13. Mimori-Kiyosue, Y. et al. Mammalian CLASPs are required for mitotic spindle organization and kinetochore alignment. Genes Cells 11, 845–857 (2006).

    Article  CAS  Google Scholar 

  14. Manning, A. L. et al. CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore–microtubule dynamics to promote mitotic progression and fidelity. EMBO J. 29, 3531–3543 (2010).

    Article  CAS  Google Scholar 

  15. Thein, K. H., Kleylein-Sohn, J., Nigg, E. A. & Gruneberg, U. Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity. J. Cell Biol. 178, 345–354 (2007).

    Article  CAS  Google Scholar 

  16. McGuinness, B. E., Hirota, T., Kudo, N. R., Peters, J. M. & Nasmyth, K. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol. 3, e86 (2005).

    Article  Google Scholar 

  17. Daum, J. R. et al. Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr. Biol. 21, 1018–1024 (2011).

    Article  CAS  Google Scholar 

  18. Stevens, D., Gassmann, R., Oegema, K. & Desai, A. Uncoordinated loss of chromatid cohesion is a common outcome of extended metaphase arrest. PLoS ONE 6, e22969 (2011).

    Article  CAS  Google Scholar 

  19. Kwiatkowski, N. et al. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat. Chem. Biol. 6, 359–368 (2010).

    Article  CAS  Google Scholar 

  20. Magidson, V. et al. The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146, 555–567 (2011).

    Article  CAS  Google Scholar 

  21. Cimini, D., Wan, X., Hirel, C. B. & Salmon, E. D. Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr. Biol. 16, 1711–1718 (2006).

    Article  CAS  Google Scholar 

  22. Levesque, A. A. & Compton, D. A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135–1146 (2001).

    Article  CAS  Google Scholar 

  23. Levesque, A. A., Howard, L., Gordon, M. B. & Compton, D. A. A functional relationship between NuMA and kid is involved in both spindle organization and chromosome alignment in vertebrate cells. Mol. Biol. Cell 14, 3541–3552 (2003).

    Article  CAS  Google Scholar 

  24. Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388–391 (2006).

    Article  CAS  Google Scholar 

  25. Cai, S., O’Connell, C. B., Khodjakov, A. & Walczak, C. E. Chromosome congression in the absence of kinetochore fibres. Nat. Cell Biol. 11, 832–838 (2009).

    Article  CAS  Google Scholar 

  26. Sardar, H. S., Luczak, V. G., Lopez, M. M., Lister, B. C. & Gilbert, S. P. Mitotic kinesin CENP-E promotes microtubule plus-end elongation. Curr. Biol. 20, 1648–1653 (2010).

    Article  CAS  Google Scholar 

  27. Wood, K. W. et al. Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc. Natl Acad. Sci. USA 107, 5839–5844 (2010).

    Article  CAS  Google Scholar 

  28. Compton, D. A. Focusing on spindle poles. J. Cell Sci. 111, 1477–1481 (1998).

    CAS  PubMed  Google Scholar 

  29. Garrett, S., Auer, K., Compton, D. A. & Kapoor, T. M. hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr. Biol. 12, 2055–2059 (2002).

    Article  CAS  Google Scholar 

  30. Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002).

    Article  CAS  Google Scholar 

  31. Bettencourt-Dias, M. & Glover, D. M. Centrosome biogenesis and function: Centrosomics brings new understanding. Nat. Rev. 8, 451–463 (2007).

    Article  CAS  Google Scholar 

  32. Dammermann, A. & Merdes, A. Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J. Cell Biol. 159, 255–266 (2002).

    Article  CAS  Google Scholar 

  33. Gruber, J., Harborth, J., Schnabel, J., Weber, K. & Hatzfeld, M. The mitotic-spindle-associated protein astrin is essential for progression through mitosis. J. Cell Sci. 115, 4053–4059 (2002).

    Article  CAS  Google Scholar 

  34. Kim, K. & Rhee, K. The pericentriolar satellite protein CEP90 is crucial for integrity of the mitotic spindle pole. J. Cell Sci. 124, 338–347 (2011).

    Article  CAS  Google Scholar 

  35. Oshimori, N., Li, X., Ohsugi, M. & Yamamoto, T. Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation. EMBO J. 28, 2066–2076 (2009).

    Article  CAS  Google Scholar 

  36. Oshimori, N., Ohsugi, M. & Yamamoto, T. The Plk1 target Kizuna stabilizesmitotic centrosomes to ensure spindle bipolarity. Nat. Cell Biol. 8, 1095–1101 (2006).

    Article  CAS  Google Scholar 

  37. Mattiuzzo, M. et al. Abnormal kinetochore-generated pulling forces from expressing a N-terminally modified Hec1. PLoS ONE 6, e16307 (2011).

    Article  CAS  Google Scholar 

  38. Kubo, A., Sasaki, H., Yuba-Kubo, A., Tsukita, S. & Shiina, N. Centriolar satellites: Molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. J. Cell Biol. 147, 969–980 (1999).

    Article  CAS  Google Scholar 

  39. Tokai-Nishizumi, N., Ohsugi, M., Suzuki, E. & Yamamoto, T. The chromokinesin Kid is required for maintenance of proper metaphase spindle size. Mol. Biol. Cell 16, 5455–5463 (2005).

    Article  CAS  Google Scholar 

  40. Pereira, A. J. & Maiato, H. Improved kymography tools and its applications to mitosis. Methods 51, 214–219 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Macedo and P. Sampaio for technical help, A. Pereira for expertise in statistical analysis and all colleagues that provided invaluable reagents. E.L. is supported by Programa Ciência funded by Programa Operacional Potencial Humano (POPH)/QREN, as well as grant PTDC/SAU-OBD/100261/2008 from Fundação para a Ciência e a Tecnologia of Portugal (COMPETE-FEDER). S.M. held a fellowship from the Fundação para a Ciência e a Tecnologia (FCT) of Portugal (SFRH/BPD/26780/2006). P.M. holds an SNF-Professorship and a EURYI award. Work in the laboratory of H.M. is financially supported by grants PTDC/SAU-GMG/099704/2008 and PTDC/SAU-ONC/112917/2009 from Fundação para a Ciência e a Tecnologia of Portugal (COMPETE-FEDER), the Human Frontier Research Program and the seventh framework programme grant PRECISE from the European Research Council.

Author information

Authors and Affiliations

Authors

Contributions

E.L. designed, carried out and analysed most experiments. S.M. and A.M. carried out initial phenotypic characterization of CLASP1/2 RNAi. M.B. carried out flux measurements. A.T. and P.M. provided the EGFP–centrin-2/α-tubulin–mRFP stable HeLa cell line. H.M. designed experiments, analysed the data, coordinated the work and wrote the manuscript with contributions from E.L. and S.M.

Corresponding authors

Correspondence to Alberto Toso or Helder Maiato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 723 kb)

Supplementary Movie 1

Supplementary Information (MOV 1093 kb)

Supplementary Movie 2

Supplementary Information (MOV 4271 kb)

Supplementary Movie 3

Supplementary Information (MOV 2983 kb)

Supplementary Movie 4

Supplementary Information (MOV 718 kb)

Supplementary Movie 5

Supplementary Information (MOV 404 kb)

Supplementary Movie 6

Supplementary Information (MOV 1340 kb)

Supplementary Movie 7

Supplementary Information (MOV 1151 kb)

Supplementary Movie 8

Supplementary Information (MOV 2261 kb)

Supplementary Movie 9

Supplementary Information (MOV 562 kb)

Supplementary Movie 10

Supplementary Information (MOV 2046 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logarinho, E., Maffini, S., Barisic, M. et al. CLASPs prevent irreversible multipolarity by ensuring spindle-pole resistance to traction forces during chromosome alignment. Nat Cell Biol 14, 295–303 (2012). https://doi.org/10.1038/ncb2423

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2423

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing