Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Local adaptation and population differentiation at the interleukin 13 and interleukin 4 loci

Abstract

A 25.6 kb region at chromosome 5q31, covering the entire human interleukin 13 (IL-13) and interleukin 4 (IL-4) genes, has been reported to be associated with bronchial asthma. We have examined nucleotide variations at this locus in African, European American, and Japanese populations, using 120 diallelic variants. A block of strong linkage disequilibrium (LD) (D>0.7) spans a 10 kb region containing IL-4 in European American and Japanese populations, and is present but less clear in African samples. Two major haplotypes at IL-4 account for >80% of haplotypes in European Americans and Japanese. These haplotypes are common and quite diverged from each other and the ancestral haplotype, resulting in highly significant deviations from neutrality. FST statistics show that European American and Japanese populations are unusually distinct at the IL-4 locus. The most common haplotype in the European American population is much less common in the Japanese population, and vice versa. This implies that natural selection has acted on IL-4 haplotypes differently in different populations. This selected variation at IL-4 may account for some genetic variance underlying susceptibility to asthma and other allergic diseases. The strong LD observed in the IL-4 region may allow more efficient disease-association studies using this locus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Holt PG, Macaubas C, Stumbles PA, Sly PD . The role of allergy in the development of asthma. Nature 1999; 402 (Suppl): B12–B17.

    Article  CAS  PubMed  Google Scholar 

  2. Busse WW, Lemanske RF . Asthma. N Engl J Med 2001; 344: 350–362.

    Article  CAS  PubMed  Google Scholar 

  3. Mosmann TR, Sad S . The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17: 138–146.

    Article  CAS  PubMed  Google Scholar 

  4. Umetsu DT, McIntire JJ, Akbari O, Macaubas C, DeKruyff RH . Asthma: An epidemic of dysregulated immunity. Nat Immunol 2001; 3: 715–720.

    Article  Google Scholar 

  5. Smirnov DV, Smirnova MG, Korobko VG, Frolova EI . Tandem arrangement of human genes for interleukin-4 and interleukin-13: resemblance in their organization. Gene 1995; 155: 277–281.

    Article  CAS  PubMed  Google Scholar 

  6. Zurawski G, de Vries JE . Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today 1993; 15: 19–26.

    Article  Google Scholar 

  7. The Collaborative Study on the Genetics of Asthma. A genome-wide search for asthma susceptibility loci in ethnically diverse populations. Nat Genet 1997; 15: 389–392.

  8. Ober C, Cox NJ, Abney M et al. Genome-wide search for asthma susceptibility loci in a founder population. Hum Mol Genet 1998; 7: 1393–1398.

    Article  CAS  PubMed  Google Scholar 

  9. Yokouchi Y, Nukaga Y, Shibasaki M et al. Significant evidence for linkage of mite-sensitive childhood asthma to chromosome 5q31–q33 near the interleukin 12 B locus by a genome-wide search in Japanese families. Genomics 2000; 66: 152–160.

    Article  CAS  PubMed  Google Scholar 

  10. Rioux JD, Daly MJ, Silverberg MS et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29: 223–228.

    Article  CAS  PubMed  Google Scholar 

  11. Heinzmann A, Mao XQ, Akaiwa M et al. Genetic variants of IL-13 signaling and human asthma and atopy. Hum Mol Genet 2000; 9: 549–559.

    Article  CAS  PubMed  Google Scholar 

  12. Graves PE, Kabesch M, Halonen M et al. A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J Allergy Clin Immunol 2000; 105: 506–513.

    Article  CAS  PubMed  Google Scholar 

  13. Howard TD, Whittaker PA, Zaiman AL et al. Identification and association of polymorphisms in the interleukin-13 gene with asthma and atopy in a Dutch population. Am J Respir Cell Mol Biol 2001; 25: 377–384.

    Article  CAS  PubMed  Google Scholar 

  14. Walley AJ, Cookson WO . Investigation of an interleukin-4 promoter polymorphism for associations with asthma and atopy. J Med Genet 1996; 33: 689–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Laitinen T, Kauppi P, Ignatius J et al. Genetic control of serum IgE levels and asthma: linkage and linkage disequilibrium studies in an isolated population. Hum Mol Genet 1997; 6: 2069–2076.

    Article  CAS  PubMed  Google Scholar 

  16. Noguchi E, Shibasaki M, Arinami T et al. Association of asthma and the interleukin-4 promoter gene in Japanese. Clin Exp Allergy 1998; 28: 449–453.

    Article  CAS  PubMed  Google Scholar 

  17. Elliott K, Fitzpatrick E, Hill D et al. The −590C/T and −34C/T interleukin-4 promoter polymorphisms are not associated with atopic eczema in childhood. J Allergy Clin Immunol 2001; 108: 285–287.

    Article  CAS  PubMed  Google Scholar 

  18. Jorde LB . Linkage disequilibrium and the search for complex disease genes. Genome Res 2000; 10: 1435–1444.

    Article  CAS  PubMed  Google Scholar 

  19. Ardlie KG, Kruglyak L, Seielstad M . Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002; 3: 299–309.

    Article  CAS  PubMed  Google Scholar 

  20. Nakajima T, Jorde LB, Ishigami T et al. Nucleotide diversity and haplotype structure of the human angiotensinogen gene in two populations. Am J Hum Genet 2002; 70: 108–123.

    Article  CAS  PubMed  Google Scholar 

  21. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES . High-resolution haplotype structure in the human genome. Nat Genet 2001; 29: 229–232.

    Article  CAS  PubMed  Google Scholar 

  22. Patil N, Berno AJ, Hinds DA et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294: 1719–1723.

    Article  CAS  PubMed  Google Scholar 

  23. Gabriel SB, Schaffner SF, Nguyen H et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  24. Weiss KB, Gergen PJ . The epidemiology of asthma. In: Blumenthal MN, Bjorksten B (eds) Genetics of Allergy and Asthma. Marcel Dekker Inc.: New York, 1997, pp 137–169.

    Google Scholar 

  25. Sachidanandam R, Weissman D, Schmidt SC et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–933.

    Article  CAS  PubMed  Google Scholar 

  26. Tajima F . Evolutionary relationship of DNA sequences in finite populations. Genetics 1983; 105: 437–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fu YX, Li WH . Statistical tests of neutrality of mutations. Genetics 1993; 133: 693–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Harpending H, Rogers A . Genetic perspectives on human origins and differentiation. Ann Rev Genomics Hum Genet 2000; 1: 361–385.

    Article  CAS  Google Scholar 

  29. Stephens JC, Schneider JA, Tanguay DA et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 2001; 293: 489–493.

    Article  CAS  PubMed  Google Scholar 

  30. Wooding S, Un-kyung K, Bamshad M, Larsen J . Natural selection and molecular evolution in PTC, a bitter taste receptor gene. Am J Hum Genet 2004; 74: 637–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tiahkoff SA, Verrelli BC . Patterns of human genetic diversity: Implications for human evolutionary history and disease. Annu Rev Genom Hum Genet 2003; 4: 293–340.

    Article  Google Scholar 

  32. Bowcock AM, Kidd JR, Mountain JL et al. Drift, admixture, and selection in human evolution: a study with DNA polymorphisms. Proc Natl Acad Sci USA 1991; 88: 839–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akey JM, Zhang G, Zhang K, Jin L, Shriver MD . Interrogating a high-density SNP map for signatures of natural selection. Genome Res 2002; 12: 1805–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fallin D, Schork NJ . Accuracy of haplotype frequency estimation for biallelic loci, via the expectation-maximization algorithm for unphased diploid genotype data. Am J Hum Genet 2000; 67: 947–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tishkoff SA, Pakstis AJ, Ruano G, Kidd KK . The accuracy of statistical methods for estimation of haplotype frequencies: an example from the CD4 locus. Am J Hum Genet 2000; 67: 518–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stephens M, Donnelly P . A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bandelt H-J, Forster P, Sykes BC, Richards MB . Mitochondrial portraits of human populations using median networks. Genetics 1995; 141: 743–753.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sabeti PC, Reich DE, Higgins JM et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 2002; 419: 832–837.

    Article  CAS  PubMed  Google Scholar 

  39. Bamshad M, Wooding SP . Signatures of natural selection in the human genome. Nat Rev Genet 2003; 4: 99–111.

    Article  CAS  PubMed  Google Scholar 

  40. Tishkoff SA, Varkonyi R, Cahinhinan N et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 2001; 293: 455–462.

    Article  CAS  PubMed  Google Scholar 

  41. Verrelli BC, McDonald JH, Argyropoulos G et al. Evidence for balancing selection from nucleotide sequence analyses of human G6PD. Am J Hum Genet 2002; 71: 1112–1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ding YC, Chi HC, Grady DL et al. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc Natl Acad Sci USA 2002; 99: 309–314.

    Article  CAS  PubMed  Google Scholar 

  43. Gilad Y, Rosenberg S, Przeworski M, Lancet D, Skorecki K . Evidence for positive selection and population structure at the human MAO-A gene. Proc Natl Acad Sci USA 2002; 99: 862–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fullerton SM, Bartoszewicz A, Ybazeta G et al. Geographic and haplotype structure of candidate type 2 diabetes susceptibility variants at the calpain-10 locus. Am J Hum Genet 2002; 70: 1096–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bamshad MJ, Mummidi S, Gonzalez E et al. A strong signature of balancing selection in the 5′ cis-regulatory region of CCR5. Proc Natl Acad Sci USA 2002; 99: 10539–10544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang J, Rowe WL, Clark AG, Buetow KH . Genomewide distribution of high-frequency, completely mismatching SNP haplotype pairs observed to be common across human populations. Am J Hum Genet 2003; 73: 1073–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou G, Zhai Y, Dong X et al. Haplotype structure and evidence from positive selection at the human IL13 locus. Mol Biol Evol 2004; 21: 29–35.

    Article  CAS  PubMed  Google Scholar 

  48. Rockman MV, Hahn MW, Soranzo N, Goldstein DB, Wray GA . Positive selection on a human-specific transcription factor binding site regulating IL4 expression. Curr Biol 2003; 13: 2118–2123.

    Article  CAS  PubMed  Google Scholar 

  49. Rosenwasser LJ, Borish L . Genetics of atopy and asthma: the rationale behind promoter-based candidate gene studies (IL-4 and IL-10). Am J Respir Crit Care Med 1997; 156: S142–S155.

    Article  Google Scholar 

  50. Wooding SP, Watkins WS, Bamshad MJ, Dunn DM, Weiss RB, Jorde LB . DNA sequence variation in a 3.7-kb noncoding sequence 5′ of the CYP1A2 gene: Implications for human population history and natural selection. Am J Hum Genet 2002; 71: 528–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Watterson GA . On the number of segregating sites in genetical models without recombination. Theor Popul Biol 1975; 7: 256–276.

    Article  CAS  PubMed  Google Scholar 

  52. Nei M, Li WH . Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 1979; 76: 5269–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tajima F . Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Excoffier L . Human demographic history: refining the recent African origin model. Curr Opin Genet Dev 2002; 12: 675–682.

    Article  CAS  PubMed  Google Scholar 

  55. Kondrashov AS . Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum Mutat 2003; 21: 12–27.

    Article  CAS  PubMed  Google Scholar 

  56. Wall JD . Recombination and the power of statistical tests of neutrality. Genet Res Camb 1999; 74: 65–79.

    Article  Google Scholar 

  57. Weir BS, Cockerham CC . Estimating F statistics for the analysis of population structure. Evolution 1984; 38: 1358–1370.

    CAS  PubMed  Google Scholar 

  58. Na L, Stephens M . Modeling linkage disequilibrium, and identifying recombination hotspots using SNP data. Genetics 2003; 165: 2213–2233.

    Google Scholar 

  59. Lewontin RC . The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 1964; 49: 49–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hill WG, Robertson A . Linkage disequilibrium in finite populations. Theor Appl Genet 1968; 38: 226–231.

    Article  CAS  PubMed  Google Scholar 

  61. Hubbard T, Barker D, Birney E et al. The Ensembl genome database project. Nucleic Acids Res 2002; 30: 38–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research for the Future Program Grant of The Japan Society for the Promotion of Science (II), NIH Grant RO1 GM59290 (LBJ), and NSF Grant BCS-0218370 (LBJ). We are grateful to Miho Kakihara for technical assistances and Dr Atsushi Tajima for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakagami, T., Witherspoon, D., Nakajima, T. et al. Local adaptation and population differentiation at the interleukin 13 and interleukin 4 loci. Genes Immun 5, 389–397 (2004). https://doi.org/10.1038/sj.gene.6364109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364109

Keywords

This article is cited by

Search

Quick links