Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Stable therapeutic serum levels of human alpha-1 antitrypsin (AAT) after portal vein injection of recombinant adeno-associated virus (rAAV) vectors

Abstract

Previous work from our group showed that recombinant adeno-associated virus (rAAV) vectors mediated long-term secretion of therapeutic serum levels of human alpha-1 antitrypsin (hAAT) after a single injection in murine muscle. We hypothesized that hepatocyte transduction could be even more efficient, since these cells represent the natural site of AAT production and secretion. To test this hypothesis, rAAV vectors containing the hAAT cDNA driven by either the human elongation factor 1 alpha promoter, the human cytomegalovirus immediate–early promoter (CMV), or the CMV-chicken beta actin hybrid (CB) promoter were injected into the portal or tail veins of adult C57Bl/6 mice. Potentially therapeutic serum levels of hAAT (600 μg/ml) were achieved after portal vein injection of doses of 4 × 109 infectious units (IU), a 10-fold lower dose than that required for similar levels of expression via the i.m. route. Serum levels greater than 1 mg/ml were achieved at doses of 3 × 1010 IU. Southern blotting of liver DNA revealed the presence of circular episomal vector genomes. Immunostaining showed that transgene expression was scattered throughout the liver parenchyma. Similar results were obtained with a rAAV-CB-green fluorescent protein (GFP) vector. There was no evidence of hepatic toxicity. These data indicate that liver-directed rAAV-based gene therapy is effective in the murine model, and hence might be feasible for treatment of human AAT deficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Crystal RG . The alpha 1-antitrypsin gene and its deficiency states Trends Genet 1989 5: 411–417

    Article  CAS  PubMed  Google Scholar 

  2. Brantly ML et al. Use of a highly purified alpha 1-antitrypsin standard to establish ranges for the common normal and deficient alpha 1-antitrypsin phenotypes Chest 1991 100: 703–708

    Article  CAS  PubMed  Google Scholar 

  3. Sharp HL, Bridges RA, Krivit W, Freier EF . Cirrhosis associated with alpha-1-antitrypsin deficiency: a previously unrecognized inherited disorder J Lab Clin Med 1969 73: 934–939

    CAS  PubMed  Google Scholar 

  4. Lomas DA, Evans DL, Finch JT, Carrell RW . The mechanism of Z alpha 1-antitrypsin accumulation in the liver (see comments) Nature 1992 357: 605–607

    Article  CAS  PubMed  Google Scholar 

  5. Lomas DA . Loop-sheet polymerization: the mechanism of alpha1-antitrypsin deficiency Respir Med 2000 94: (Suppl. C) S3–6

    Article  PubMed  Google Scholar 

  6. Wewers MD, Casolaro MA, Crystal RG . Comparison of alpha-1-antitrypsin levels and antineutrophil elastase capacity of blood and lung in a patient with the alpha-1-antitrypsin phenotype null-null before and during alpha-1-antitrypsin augmentation therapy Am Rev Respir Dis 1987 135: 539–543

    CAS  PubMed  Google Scholar 

  7. Garver RI Jr, Chytil A, Courtney M, Crystal RG . Clonal gene therapy: transplanted mouse fibroblast clones express human alpha 1-antitrypsin gene in vivo Science 1987 237: 762–764

    Article  PubMed  Google Scholar 

  8. Rosenfeld MA et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo (see comments) Science 1991 252: 431–434

    Article  CAS  PubMed  Google Scholar 

  9. Kay MA et al. Expression of human alpha 1-antitrypsin in dogs after autologous transplantation of retroviral transduced hepatocytes Proc Natl Acad Sci USA 1992 89: 89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Setoguchi Y, Jaffe HA, Chu CS, Crystal RG . Intraperitoneal in vivo gene therapy to deliver alpha 1-antitrypsin to the systemic circulation Am J Respir Cell Mol Biol 1994 10: 369–377

    Article  CAS  PubMed  Google Scholar 

  11. Levy MY, Barron LG, Meyer KB, Szoka FC Jr . Characterization of plasmid DNA transfer into mouse skeletal muscle: evaluation of uptake mechanism, expression and secretion of gene products into blood Gene Therapy 1996 3: 201–211

    CAS  PubMed  Google Scholar 

  12. Kay MA, Graham F, Leland F, Woo SL . Therapeutic serum concentrations of human alpha-1-antitrypsin after adenoviral-mediated gene transfer into mouse hepatocytes Hepatology 1995 21: 815–819

    CAS  PubMed  Google Scholar 

  13. Schiedner G et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity (published erratum appears in Nat Genet 1998 Mar; 18(3): 298) Nat Genet 1998 18: 180–183

    Article  CAS  PubMed  Google Scholar 

  14. Morral N et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity Hum Gene Ther 1998 9: 2709–2716

    Article  CAS  PubMed  Google Scholar 

  15. Song S et al. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors Proc Natl Acad Sci USA 1998 95: 14384–14388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakai H, Iwaki Y, Kay MA, Couto LB . Isolation of recombinant adeno-associated virus vector–cellular DNA junctions from mouse liver J Virol 1999 73: 5438–5447

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Snyder RO et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors Nat Genet 1997 16: 270–276

    Article  CAS  PubMed  Google Scholar 

  18. Herzog RW et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus Proc Natl Acad Sci USA 1997 94: 5804–5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xiao W et al. Adeno-associated virus as a vector for liver-directed gene therapy J Virol 1998 72: 10222–10226

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Miao CH et al. The kinetics of rAAV integration in the liver (letter) Nat Genet 1998 19: 13–15

    Article  CAS  PubMed  Google Scholar 

  21. Wagner JA et al. Safety and biological efficacy of an adeno-associated virus vector-cystic fibrosis transmembrane regulator (AAV-CFTR) in the cystic fibrosis maxillary sinus Laryngoscope 1999 109: 266–274

    Article  CAS  PubMed  Google Scholar 

  22. Wagner JA et al. Efficient and persistent gene transfer of AAV-CFTR in maxillary sinus (letter) Lancet 1998 351: 1702–1703

    Article  CAS  PubMed  Google Scholar 

  23. Kay MA et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector (see comments) Nat Genet 2000 24: 257–261

    Article  CAS  PubMed  Google Scholar 

  24. Miao CH et al. Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction J Virol 2000 74: 3793–3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakai H et al. Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver Blood 1998 91: 4600–4607

    CAS  PubMed  Google Scholar 

  26. Guo ZS, Wang LH, Eisensmith RC, Woo SL . Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer Gene Therapy 1996 3: 802–810

    CAS  PubMed  Google Scholar 

  27. Virella-Lowell I et al. A cmv/beta actin hybrid promoter improves rAAV vector expression in vitro and in vivo. American Thoracic Society: International Conference, Toronto, ON, Canada 2000 p A286

  28. Monahan PE et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia Gene Therapy 1998 5: 40–49

    Article  CAS  PubMed  Google Scholar 

  29. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers J Virol 1998 72: 4212–4223

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wakabayashi-Ito N, Nagata S . Characterization of the regulatory elements in the promoter of the human elongation factor-1 alpha gene J Biol Chem 1994 269: 29831–29837

    CAS  PubMed  Google Scholar 

  31. Zolotukhin S et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield Gene Therapy 1999 6: 973–985

    Article  CAS  PubMed  Google Scholar 

  32. Church GM, Gilbert W . Genomic sequencing Proc Natl Acad Sci USA 1984 81: 1991–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brass CA, Crawford JM, Narciso JP, Gollan JL . Evaluation of University of Wisconsin cold-storage solution in warm hypoxic perfusion of rat liver: the addition of fructose reduces injury Gastroenterology 1993 105: 1455–1463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thanks Marda Scott Jorgensen and Trevor Jorgensen for technical assistance and Ed Mason, Michael Morgan, Kye Chesnut and the UF vector core facility for rAAV production. This work was supported by grants from the NHLBI (P50-HL-59412, P01-HL-51811), the NIDDK (R01-DK-51809, R01-DK-53512, and P01-DK-58327), and the Alpha One Foundation. Some of the authors (SS and TRF) could be entitled to patent royalties for products described in this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S., Embury, J., Laipis, P. et al. Stable therapeutic serum levels of human alpha-1 antitrypsin (AAT) after portal vein injection of recombinant adeno-associated virus (rAAV) vectors. Gene Ther 8, 1299–1306 (2001). https://doi.org/10.1038/sj.gt.3301422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301422

Keywords

This article is cited by

Search

Quick links