Skip to main content
Log in

Isotope dilution mass spectrometry of microelectronically relevant heavy metal traces in high-purity cobalt

  • Original Papers
  • Inorganic Analysis And Materials
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

Because cobalt and its silicides are increasingly used in microelectronic devices, an isotope dilution mass spectrometric (IDMS) method has been developed for trace analysis of relevant heavy metals (U, Th, Fe, Zn, Tl, and Cd) in high-purity cobalt. The measurements of the isotope ratios were carried out with a small thermal ionization quadrupole mass spectrometer by producing positive thermal ions in a single- or double-filament ion source. For the trace/matrix separation and the isolation of the different heavy metals, anion-exchange chromatography and an extraction method for iron were applied. The detection limits obtained were (in ng/g): U=0.007, Th=0.017, Tl=0.06, Cd=1, Zn=8, and Fe=11, which demonstrates that the particularly critical radioactive impurities uranium and thorium could be analysed down to the low pg/g range. Three cobalt samples of different purity were analysed with concentrations ranging from about 0.1 ng/g for U and Th in an ultra high-purity material produced for microelectronic purposes, up to about 70 μg/g for Cd in a cobalt sample with declared purity of 99.8%. Because IDMS usually results in accurate analytical results, it can be used in the future for calibration of other methods like glow discharge mass spectrometry, as could be shown by analysing one cobalt sample by both methods. IDMS can also be applied for the production of urgently needed certified standard reference materials in this important field of high technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen WD, Cui YD, Hsu CC, Tao J (1991) J Appl Phys 69:7612

    Google Scholar 

  2. Burte EP, Ye M (1991) J Mater Res 6:1892

    Google Scholar 

  3. Xiao ZG, Rozgonyi GA, Canocai CA, Osburn CM (1992) J Mater Res 7:269

    Google Scholar 

  4. Avau D, Vandervorst W, Maes HE (1987) Fresenius Z Anal Chem 329:220

    Google Scholar 

  5. Van den Hove L, Wolters R, Maex K, De Keersmaeker R, Declerck G (1986) J Vac Sci Technol B4:1358

    Google Scholar 

  6. Hobbs LP, Maex K (1991) Appl Surf Sci 53:321

    Google Scholar 

  7. Hsia SL, Tan TY, Smith P, McGuire GE (1991) J Appl Phys 70:7569

    Google Scholar 

  8. Verhaar RDJ, Bos AA, Van Laarhoven JMFG, Kraaij H, Wolters RAM (1989) Appl Surf Sci 38:458

    Google Scholar 

  9. Hegde RI, Jones RE, Kaushik VS, Tobin PJ (1991) Appl Surf Sci 52:59

    Google Scholar 

  10. Maex K (1991) Appl Surf Sci 53:328

    Google Scholar 

  11. White AE, Short KT, Dynes RC, Garno JP, Gibson JM (1987) Appl Phys Lett 50:95

    Google Scholar 

  12. Vantomme A, Wu MF, Langouche G, Vanderstraeten H, Bruynseraede Y (1991) Appl Surf Sci 53:278

    Google Scholar 

  13. Jebasinski R, Mantel S, Vescan L, Dieker C (1991) Appl Surf Sci 53:264

    Google Scholar 

  14. Kohlhof K, Mantel S, Stritzker B (1989) Fresenius Z Anal Chem 333:583

    Google Scholar 

  15. Maex K, Vanhellemont J, Petersson S, Lauwers A (1991) Appl Surf Sci 53:273

    Google Scholar 

  16. Bousetta A, Al Bayati AH, van den Berg JA, Armour DG (1992) Appl Surf Sci 56–58:480

    Google Scholar 

  17. Mahmood F, Ahmed H, Jeynes C, Gillin WP (1992) Appl Surf Sci 59:55

    Google Scholar 

  18. Lin TL, Fathauer RW, Grunthaner PJ, d'Anterroches C (1988) Appl Phys Lett 52:804

    Google Scholar 

  19. Grasserbauer M, Stingeder G (1990) Fresenius J Anal Chem 337:701

    Google Scholar 

  20. Kolbesen BO, Palmer W (1989) Fresenius Z Anal Chem 333:561

    Google Scholar 

  21. Heumann KG (1988) In: Adams F, Gijbels R, Van Grieken R (eds) Inorganic mass spectrometry. Wiley, New York, p 301

    Google Scholar 

  22. Heumann KG (1992) Mass Spectrom Rev 11:41

    Google Scholar 

  23. Heumann KG, Schindlmeier W, Zeininger H, Schmid M (1985) Fresenius Z Anal Chem 320:457

    Google Scholar 

  24. Götz A, Heumann KG (1986) Fresenius Z Anal Chem 325:24

    Google Scholar 

  25. Beer B, Heumann KG (1992) Fresenius J Anal Chem 343:741

    Google Scholar 

  26. Herzner P, Heumann KG (1992) Anal Chem 64:2942

    Google Scholar 

  27. Trofimov NV, Petrov BI, Nekhaev NN, Busev AI (1980) Zavod Lab 46:15

    Google Scholar 

  28. Vassileva E, Arpadjan S (1990) Analyst 115:399

    Google Scholar 

  29. Gautier E, Marrero J, Servant R (1989) J Radioanal Nucl Chem Lett 135:333

    Google Scholar 

  30. Gijbels R (1990) Talanta 37:363

    Google Scholar 

  31. Grasserbauer M (1992) Pure Appl Chem 64:485

    Google Scholar 

  32. Herzner P, Heumann KG (1992) Mikrochim Acta 106:127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, B., Heumann, K.G. Isotope dilution mass spectrometry of microelectronically relevant heavy metal traces in high-purity cobalt. Fresenius J Anal Chem 347, 351–355 (1993). https://doi.org/10.1007/BF00323819

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323819

Keywords

Navigation