Skip to main content
Log in

Sliding spark spectroscopy

Characterization and application of a new radiation source in optical emission spectrometry for the identification of chlorine-containing waste plastics and their inorganic additives

  • Original Papers
  • General Chemistry
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

A new analytical radiation source combined with fiber optics linked to a diode array detection device with modified software is described. The direct-reading spectrometer simultaneously covers the wavelength range 185–510 nm with a spectral resolution of <1.5 nm. Intense optical emission is observed when positionally stable high-current surface sparks supplied by a pulse-generator with definite discharge parameters (max. 800 Ampere/pulse) are sliding over compact non-conductive materials such as plastics, glasses, quartz filters or powder pellets. Substrate vaporization, ionization and excitation processes in the surface discharge plasma channel generate emission corresponding to neutral and ionic states. The spectra are essentially composed of lines emitted by the electrode material (e.g. copper, silver), from the substrate under investigation, radiation continuum as well as structured background from the surrounding air atmosphere. Due to the occurrence of emission lines of reactive fillers, inorganic pigments and stabilizers, a rapid multi-element screening method is demonstrated. A rapid identification system (mix-up test) of PVC or fire-retardant thermoplastics within one second has been realized from the atomic emission line intensity originating from the sputtered copper electrode material according to its increased volatility in the presence of chlorine (modified Beilstein test).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chevrier M, Baudoin M, Passetemps R, Hunault P, Singer R (1991) Keram Z 43: 873–874

    Google Scholar 

  2. Laqua K (1980) In: Ullmanns Enzyklopädie der technischen Chemie, Band 5. Analysen- und Meßverfahren. VCH, Weinheim, pp 491–494

    Google Scholar 

  3. Verband Kunststofferzeugende Industrie eV (1992) Information booklet Kunststoffe-Recycling

  4. Dickhäuser K (1986) Umwelt 6:464–466

    Google Scholar 

  5. Tötsch W (1992) Nachr Chem Techn Lab 40: 715–722

    Google Scholar 

  6. Gächter R, Müller H (1979) In: Kunststoff-Additive. Hanser, München Wien

    Google Scholar 

  7. Kaminski W, Bellmann U (1989) Umwelt 19:336–337

    Google Scholar 

  8. Ishiguro M, Matsuoka C, Nakatsu A (1987) Kanzei Chuo Bunsekishoho 27:179–201

    Google Scholar 

  9. Eisenreich N (1992) 384. Dechema-Kolloquium, Frankfurt/Main 30 Jan 1992, Germany

  10. Bosch K (1975) Beitr Gerichtl Med 33:280–284

    Google Scholar 

  11. Stoev G (1985) Khim Ind (Sofia) 57:34–35

    Google Scholar 

  12. Debelmas O, Calop J, Luu-Duc C (1983) Ann Pharm Fr 41:129–138

    Google Scholar 

  13. O'Mara MM (1970) J Polym Sci 8 (Part A-1):1887–1890

    Google Scholar 

  14. Vesely D, Lindberg H (1984) Conf Ser-Inst Phys 68 (Electron Microsc Anal 1983):7–10

    Google Scholar 

  15. Summers JW, Mikofalvy B, Little S (1990) J Vinyl Technol 12:161–164

    Google Scholar 

  16. Rouchon JP, Sage D, Romand M, Bador R (1977) Angew Makromol Chem 65:211–222

    Google Scholar 

  17. Soentgerath H (1971) Kunststoffe 61:940–942

    Google Scholar 

  18. Brunner G, Hoesselbarth B, Tannert F (1988) Acta Polymer 39:252–256

    Google Scholar 

  19. Kumazaki W, Horiguchi Y, Fukuchi R (1985) Tokio-toritsu Aisotopu Sogo Kenkyusho Kenkyu Hokoku 4:1–6

    Google Scholar 

  20. Holtkamp D, Bayer G, Holm R (1991) Mikrochim Acta 1:245–260

    Google Scholar 

  21. Pidduck AJ (1985) J Anal Appl Pyrolysis 7:215–229

    Google Scholar 

  22. Janssen F (1979) Elektrotechniek 57:96–100

    Google Scholar 

  23. Simunic S, Turnina S (1979) Kem Ind 28:413–419

    Google Scholar 

  24. Luttermann K, Claussen U, El Sayed A, Riess R (1992) Ger Offen 3 pp

  25. Schleuder M, Beyrich T (1981) Math-Naturwiss Reihe 30:17–25

    Google Scholar 

  26. Braun D (1986) Erkennen von Kunststoffen. Hanser, München Wien

    Google Scholar 

  27. Folckerts KH (1992) 384. Dechema-Kolloquium, Frankfurt/Main 30 Jan 1992, Germany

  28. Ribar B, Skrbic Z (1986) Polimeri (Zagreb) 7:357–359

    Google Scholar 

  29. Sandborg AO, Shen RB (1992) EDAX International, Mahwah JJ 07430

  30. Slickers K (1992) Die automatische Atom-Emissions-Spektralanalyse. Private publication

  31. Gänger B (1953) Der elektrische Durchschlag von Gasen. Springer, Berlin Heidelberg New York

    Google Scholar 

  32. Daniel EV (1965) Sov Phys-Tech Phys 10:600–601

    Google Scholar 

  33. Vanyukov MP, Daniel EV (1968) Sov Phys-Tech Phys 12:1416–1418

    Google Scholar 

  34. Beverly III RE (1977) J Appl Phys 48:3068–3069

    Google Scholar 

  35. Hippel vA (1932) Z f Phys 80:19–49

    Google Scholar 

  36. Beverly III RE (1978) In: Wolf E (ed) Light emission from high-current surface spark discharges. Progress in Optics XVI, North-Holland

    Google Scholar 

  37. Vodar B, Astoin N (1950) Nature 166:1029

    Google Scholar 

  38. Romand J (1962) J Quant Spectrosc Radiat Transfer 2:691–696

    Google Scholar 

  39. Winge RK, DeKalb EL, Fassel VA (1985) Appl Spectrosc 39:673–676

    Google Scholar 

  40. Pfeilsticker K (1940) Spectrochim Acta 1:424–436

    Google Scholar 

  41. Personal communication (1992) with Bärlocher GmbH, 8000 Munich 50, Germany

  42. Zaidel AN, Prokof'ev VK, Raiskii SM, Slavnyi VA, Shreider EYa (1970) In: Tables of Spectral Lines. Plenum Press, New York London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Puls-Plasma-Technik GmbH, Dortmund

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidel, T., Golloch, A., Beerwald, H. et al. Sliding spark spectroscopy. Fresenius J Anal Chem 347, 92–102 (1993). https://doi.org/10.1007/BF00322837

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00322837

Keywords

Navigation