Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T01:54:24.895Z Has data issue: false hasContentIssue false

Baseline Studies of the Clay Minerals Society Source Clay Montmorillonite STx-1b

Published online by Cambridge University Press:  01 January 2024

Elena Castellini
Affiliation:
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125, Modena, Italy
Daniele Malferrari*
Affiliation:
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125, Modena, Italy
Fabrizio Bernini
Affiliation:
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125, Modena, Italy
Maria Franca Brigatti
Affiliation:
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125, Modena, Italy
German Rafael Castro
Affiliation:
SpLine, Spanish CRG BM25 Beamline at the ESRF, 6 Jules Horowitz, F-38043, Grenoble, France Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juan Inés de la Cruz 3, E-28049, Madrid, Spain
Luca Medici
Affiliation:
Institute of Methodologies for Environmental Analysis, National Research Council of Italy, C. da S. Loja-Zona Industriale, I-85050, Tito Scalo, (Potenza), Italy
Adele Mucci
Affiliation:
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125, Modena, Italy
Marco Borsari
Affiliation:
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125, Modena, Italy
*
*E-mail address of corresponding author: daniele.malferrari@unimore.it

Abstract

For more than forty years, The Clay Minerals Society has dispensed a set of source clays which have enabled a large number of researchers to work on similar materials. Many of these source clays remained unchanged over the years but, conversely, other clays have gone out of stock and thus were replaced. This was the fate of montmorillonite STx-1a, which was replaced by STx-1b. Although STx-1a and STx-1b share many basic chemical and mineralogical features, some minor differences exist that can affect behavior. A baseline characterization of the source clay STx-1b, which was the objective of this study, was, therefore, necessary to provide researchers a tool useful not only for new investigation but also to compare new results obtained on STx-1b with literature data on STx-1a. This characterization was gained using traditional and advanced methods that included: 1) chemical composition (major and trace elements); 2) cation exchange capacity determination; 3) thermal analyses coupled with evolved gas mass spectrometry; 4) quantitative mineralogical characterization using powder X-ray diffraction and Rietveld- RIR (Reference Intensity Ratio) refinement; 5) X-ray absorption spectroscopy at the Fe K-edge; 6) diffuse reflectance ultraviolet-visible and infrared spectroscopies; and 7) 29Si, 27Al, and 1H magic-angle spinning nuclear magnetic resonance measurements. According to this multi-analytical approach, the chemical formula for STx-1b is [4](Si7.753Al0.247) [6](Al3.281Mg0.558Fe0.136Ti0.024Mn0.002) [12](Ca0.341Na0.039 K0.061)O20(OH)4.

Type
Article
Copyright
Copyright © Clay Minerals Society 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amoureux, J.-P. Huguenard, C. Engelke, F. and Taulelle, F., 2002 Unified representation of MQMAS and STMAS NMR of half-integer quadrupolar nuclei Chemical Physics Letters 356 497504.CrossRefGoogle Scholar
Assemi, S. Sharma, S. Tadjiki, S. Prisbrey, K. Ranville, J. and Miller, J.D., 2015 Effect of surface charge and elemental composition on the swelling and delamination of montmorillonite nanoclays using sedimentation field-flow fractionation and mass spectroscopy Clays and Clay Minerals 63 457468.CrossRefGoogle Scholar
Bernini, F. Castellini, E. Malferrari, D. Borsari, M. and Brigatti, M.F., 2015 Stepwise structuring of the adsorbed layer modulates the physico-chemical properties of hybrid materials from phyllosilicates interacting with the μ-oxo Fe3+-phenanthroline complex Microporous and Mesoporous Materials 211 1929.CrossRefGoogle Scholar
Bernini, F. Castellini, E. Malferrari, D. Castro, G.R. Sainz-Díaz, C.I. Brigatti, M.F. and Borsari, M., 2017 Effective and selective trapping of volatile organic sulfur derivatives by montmorillonite intercalated wit h a μ-oxo Fe(III)-phenanthroline complex Applied Materials Interfaces 9 10451056.CrossRefGoogle Scholar
Bish, L.D. Duffy, C.J., Stucki, J.W. Bish, D.L. and Mumpton, F.A., 1990 Thermogravimetric Analysis of Minerals Thermal Analysis in Clay Science Boulder, Colorado, USA The Clay Minerals Society 96157.Google Scholar
Bishop, J.L. and Murad, E., 2004 Characterization of minerals and biogeochemical markers on Mars: A Raman and IR spectroscopic study of montmorillonite Journal of Raman Spectroscopy 35 480486.CrossRefGoogle Scholar
Bishop, J.L. Madejová, J. Komadel, P. and Fröschl, H., 2002 The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites Clay Minerals 37 607616.CrossRefGoogle Scholar
Bishop, J.L. Pieters, C.M. and Edwards, J.O., 1994 Infrared spectroscopic analyses on the nature of water in montmorillonite clay Clay Minerals 42 702716.CrossRefGoogle Scholar
Borden, D. and Giese, R.F., 2001 Baseline studies of The Clay Minerals Society Source Clays: Cation exchange capacity measurements by the ammonia-electrode method Clays and Clay Minerals 49 444445.CrossRefGoogle Scholar
Brigatti, M.F. Colonna, S. Malferrari, D. and Medici, L., 2004 Characterization of Cu - complexes in smectite with different layer charge location: Chemical, thermal and EXAFS studies Geochimica et Cosmochimica Acta 68 781788.CrossRefGoogle Scholar
Brigatti, M.F. Lugli, C. Cibin, G. Marcelli, A. Giuli, G. Paris, E. Mottana, A. and Wu, Z., 2000 Reduction and sorption of chromium by Fe(II)-bearing phyllosilicates: Chemical treatments and X-ray absorption spectroscopy (XAS) studies Clays and Clay Minerals 48 272281.CrossRefGoogle Scholar
Cadars, S. Guegan, R. Garaga, M.N. Bourrat, X. Le Forestier, L. Fayon, F. Vu Huynh, T. Allier, T. Nour, Z. and Massiot, D., 2012 New insights into the molecular structures, compositions, and cation distributions in synthetic and natural montmorillonite Chemistry of Materials 24 43764389.CrossRefGoogle Scholar
Castellini, E. Berthold, C. Malferrari, D. and Bernini, F., 2013 Sodium hexametaphosphate interaction with 2:1 clay minerals illite and montmorillonite Applied Clay Science 83-84 162170.CrossRefGoogle Scholar
Che, C. Glotch, T.D. Bish, D.L. Michalski, J.R. and Xu, W., 2011 Spectroscopic study of the dehydration and/or dihydroxylation of phyllosilicate and zeolite minerals Journal of Geophysical Research 116 E05007.CrossRefGoogle Scholar
Chen, Y. Shaked, D. and Banin, A., 1979 The role of structural iron III in the UV absorption by smectites Clay Minerals 14 93201.CrossRefGoogle Scholar
Chipera, S.J. and Bish, D.L., 2001 Baseline studies of The Clay Minerals Society Source Clays: Powder X-ray diffraction analyses Clays and Clay Minerals 49 398409.CrossRefGoogle Scholar
Costanzo, P.M. and Guggenheim, S G E, 2001 Baseline Studies of the Clay Minerals Society Source Clays Clays and Clay Minerals 49 371452.CrossRefGoogle Scholar
De Jong, BHWS Van Hoek, J. Veeman, W.S. and Manson, D.V., 1987 X-ray diffraction and 29Si magic-angle-spinning NMR of opals: Incoherent long- and short-range order in opal-CT American Mineralogist 72 11951203.Google Scholar
Finck, N. Schlegel, M.L. and Bauer, A., 2015 Structural iron in dioctahedral and trioctahedral smectites: A polarized XAS study Physics and Chemistry of Minerals 42 847859.CrossRefGoogle Scholar
Finnie, K.S. Thompson, J.G. and Withers, R.L., 1994 Phase transitions in cristobalite and related structures studied by variable temperature infra-red emission spectroscopy Journal of Physical Chemistry of Solids 55 2329.CrossRefGoogle Scholar
Franzini, M. Leoni, L. and Saitta, M., 1975 Revisione di una metodologia analitica per fluorescenza-X, basata sulla correzione completa degli effetti di matrice Rendiconti della Societa` Italiana di Mineralogia e Petrografia 31 365378.Google Scholar
Gattullo, C.E. Allegretta, I. Medici, L. Fijan, R. Pii, Y. Cesco, S. Mimmo, T. and Terzano, R., 2016 Silicon dynamics in the rhizosphere: Connections with iron mobilization Journal of Plant Nutrition and Soil Science 179 409417.CrossRefGoogle Scholar
Goldman, M. Grandinetti, P.J. Llor, A. Olejniczak, Z. Sachleben, J.R. and Zwanziger, J.W., 1992 Theoretical aspects of higher-order truncations in solid-state NMR Journal of Chemical Physics 97 89478960.CrossRefGoogle Scholar
Gualtieri, A. F., 2000 Accuracy of XRPD QPA using the combined Rietveld-RIR method Journal of Applied Crystallography 33 267278.CrossRefGoogle Scholar
Guggenheim, S. and Koster van Groos, A.F., 1992 High-pressure differential thermal analysis (HP-DTA) I Dehydration reactions at elevated pressures in phyllosilicates. Journal of Thermal Analysis 38 17011728.Google Scholar
Guggenheim, S. and Koster van Groos, A.F., 2001 Baseline studies of The Clay Minerals Society Source Clays: Thermal analysis Clays and Clay Minerals 49 430440.CrossRefGoogle Scholar
Hahn, J.E. Scott, R.A. Hodgson, K.O. Doniach, S. Desjardins, S.R. and Solomon, E.I., 1982 Observation of an electric quadrupole transition in the X-ray absorption spectrum of a Cu(II) complex Chemical Physics Letter 88 595598.CrossRefGoogle Scholar
Harris, R.K. Becker, E.D. Cabral de Menezes, S.M. Goodfellow, R. and Granger, P., 2001 NMR nomenclature Nuclear spin properties and conventions for chemical shifts. Pure and Applied Chemistry 73 17951818.Google Scholar
Karickhoff, S.W. and Bailey, G.W., 1973 Optical absorption spectra of clay minerals Clays and Clay Minerals 21 5970.CrossRefGoogle Scholar
Kihara, K., 1981 Addenda and corrigendum for “On the splitatom model for hexagonal tridymite.” Zeitschrift für Kristallographie 157 93.Google Scholar
Kogel, J.E. and Lewis, S.A., 2001 Baseline studies of The Clay Minerals Society Source Clays: Chemical analysis by inductively coupled plasma-mass spectroscopy (ICP-MS) Clays and Clay Minerals 49 387392.CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R., 1994 General Structure Analysis System (GSAS) 86748.Google Scholar
Leoni, L. and Saitta, M., 1976 X-ray fluorescence analysis of 29 trace elements in rock and mineral standards Rendiconti della Società Italiana di Mineralogia e Petrografia 32 497519.Google Scholar
Lu, L. Cai, J. and Frost, R.L., 2010 Near infrared spectroscopy of stearic acid adsorbed on montmorillonite Spectrochimica Acta Part A 75 960963.CrossRefGoogle ScholarPubMed
Madejová, J., 2003 FTIR techniques in clay mineral studies Vibrational Spectroscopy 31 110.CrossRefGoogle Scholar
Madejová, J. and Komadel, P., 2001 Baseline studies of The Clay Minerals Society Source Clays: Infrared methods Clays and Clay Minerals 49 410432.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Janek, M. and Komadel, P., 1998 Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite Spectrochimica. Acta A 54 13971406.CrossRefGoogle Scholar
Malferrari, D. Brigatti, M.F. Laurora, A. Medici, L. and Pini, S., 2006 Thermal behavior of Cu(II)-, Cd(II)-, and Hg(II)-exchanged montmorillonite complexed with cysteine Journal of Thermal Analysis and Calorimetry 86 365370.CrossRefGoogle Scholar
Malferrari, D. Brigatti, M.F. Laurora, A. Pini, S. and Medici, L., 2007 Sorption kinetics and chemical forms of Cd(II) sorbed by thiol-functionalized 2:1 clay minerals Journal of Hazardous Materials 143 7381.CrossRefGoogle ScholarPubMed
Malferrari, D. Brigatti, M.F. Marcelli, A. Chu, W. and Wu, Z., 2008 Modification of Hg complexes in layered silicates with temperature: An in situ XAS study Microporous and Mesoporous Materials 107 128133.CrossRefGoogle Scholar
Manceau, A. Drits, V. Lanson, B. Chateigner, D. Wu, J. Huo, D. Gates, W.P. and Stucki, J., 2000 Oxidation-reduction mechanism of iron in dioctahedral smectites, II. Crystal chemistry of reduced Garfield nontronite American Mineralogist 85 153172.CrossRefGoogle Scholar
Mercier, L. and Detellier, C., 1994 Intercalation of tetraalkylammonium cations into smectites and its application to internal surface-area measurements Clays and Clay Minerals 42 7176.CrossRefGoogle Scholar
Men, Y. G. naser, H. and Ziegler, C., 2003 Adsorption/desorption studies on nanocrystalline alumina surfaces Analytical and Bioanalytical Chemistry 7 912916.CrossRefGoogle Scholar
Mermut, A.R. and Cano, A.F., 2001 Baseline studies of The Clay Minerals Society Source Clays: Chemical analyses of major elements Clays and Clay Minerals 49 381386.CrossRefGoogle Scholar
MNOVA 9.1.0 software (2012) Mestrelab Research S.L., Santiago de Compostela, Spain.Google Scholar
Moronta, A. Taylor, S. and Breen, C., 2002 Adsorption of olefins on aluminum- and aluminum/tetramethyl-ammonium- exchanged bentonites Clays and Clay Minerals 50 265271.CrossRefGoogle Scholar
Newville, M., 2001 IFEFFIT: Interactive XAFS analysis and FEFF fitting Journal of Synchrotron Radiation 8 322324.CrossRefGoogle ScholarPubMed
Ortega-Castro, J. Hernández-Haro, N. Munñz-Santiburcio, D. Hernández-Laguna, A. and Sainz-Díz, C.I., 2009 Crystal structure and hydroxyl group vibrational frequencies of phyllosilicates by DFT methods Journal of Molecular Structure: THEOCHEM 912 8287.CrossRefGoogle Scholar
Peacor, D.R., 1973 High-temperature single-crystal study of the cristobalite inversion Zeitschrift für Kristallographie 138 274298.CrossRefGoogle Scholar
Petit, S. Madejova, J. Decarreau, A. and Martin, F., 1999 Characterization of octahedral substitutions in kaolinites using near infrared spectroscopy Clays and Clay Minerals 47 103108.CrossRefGoogle Scholar
Ravel, B. and Newville, M., 2005 ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT Journal of Synchrotron Radiation 12 537541.CrossRefGoogle ScholarPubMed
Sherman, D.M. and Waite, T.D., 1985 Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV American Mineralogist 70 12621269.Google Scholar
Shulman, R.G. Yafet, Y. Eisenberger, P. and Blumberg, W.E., 1976 Observations and interpretation of X-ray absorption edges in iron compounds and proteins Proceedings of the National Academy of Sciences of the United States of America 73 13841388.CrossRefGoogle ScholarPubMed
Smith, G. and Alexander, L.E., 1963 Refinement of the atomic parameters of α-quartz Acta Crystallographica 16 462471.CrossRefGoogle Scholar
Takahashi, T. Kanehashi, K. and Saito, K., 2008 First evidence of multiple octahedral Al sites in Na-montmorillonite by 27Al multiple quantum MAS NMR Clays and Clay Minerals 56 520525.CrossRefGoogle Scholar
Takahashi, T. Ohkubo, T. Suzuki, K. and Ikeda, Y., 2007 High resolution solid-state NMR studies on dissolution and alteration of Na-montmorillonite under highly alkaline conditions Microporous and Mesoporous Materials 106 294297.CrossRefGoogle Scholar
Toby, B.H., 2001 EXPGUI, a graphical interface for GSAS Journal of Applied Crystallography 34 210213.CrossRefGoogle Scholar
van Olphen, H. and Fripiat, JJ Editors, 1979 Data Handbook for Clay Minerals and Other Non-metallic Minerals Oxford, England Pergamon Press.Google Scholar
Vantelon, D. Montarges-Pelletier, E. Michot, L.J. Briois, V. Pelletier, M. and Thomas, F., 2003 Iron distribution in the octahedral sheet of dioctahedral smectites An Fe K-edge Xray absorption spectroscopy study. Physics and Chemistry of Minerals 30 4453.Google Scholar
Vedder, W., 1964 Correlations between infrared spectrum and chemical composition of mica American Mineralogist 49 736768.Google Scholar
Viani, A. Gualtieri, A. and Artioli, G., 2002 The nature of disorder in montmorillonite by simulation of X-ray powder patterns American Mineralogist 87 966975.CrossRefGoogle Scholar
Westre, T.E. Kennepohl, P. DeWitt, J.G. Hedman, B. Hodgson, K.O. and Solomon, E.I., 1997 A multiplet analysis of Fe K-edge 1s→3d pre-edge features of iron complexes Journal of American Chemical Society 119 62976314.CrossRefGoogle Scholar
Wilke, M. Farges, F. Petit, P.-E. Brown, G.E. and Martin, F., 2001 Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study American Mineralogist 86 714730.CrossRefGoogle Scholar
Woessner, D.E., 1989 Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy American Mineralogist 74 203215.Google Scholar
Young, H.D., 1962 Statistical Treatment of Experimental Data New York McGraw-Hill Book Company.Google Scholar
Zhu, R. Chen, Q. Zhou, Q. Xi, Y. and Zhu, J., 2016 Adsorbents based on montmorillonite for contaminant removal from water: A review Applied Clay Science 123 239258.CrossRefGoogle Scholar