Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss-free and active optical negative-index metamaterials

Abstract

The recently emerged fields of metamaterials and transformation optics promise a family of exciting applications such as invisibility, optical imaging with deeply subwavelength resolution and nanophotonics with the potential for much faster information processing. The possibility of creating optical negative-index metamaterials (NIMs) using nanostructured metal–dielectric composites has triggered intense basic and applied research over the past several years1,2,3,4,5,6,7,8,9,10. However, the performance of all NIM applications is significantly limited by the inherent and strong energy dissipation in metals, especially in the near-infrared and visible wavelength ranges11,12. Generally the losses are orders of magnitude too large for the proposed applications, and the reduction of losses with optimized designs seems to be out of reach. One way of addressing this issue is to incorporate gain media into NIM designs13,14,15,16. However, whether NIMs with low loss can be achieved has been the subject of theoretical debate17,18. Here we experimentally demonstrate that the incorporation of gain material in the high-local-field areas of a metamaterial makes it possible to fabricate an extremely low-loss and active optical NIM. The original loss-limited negative refractive index and the figure of merit (FOM) of the device have been drastically improved with loss compensation in the visible wavelength range between 722 and 738 nm. In this range, the NIM becomes active such that the sum of the light intensities in transmission and reflection exceeds the intensity of the incident beam. At a wavelength of 737 nm, the negative refractive index improves from −0.66 to −1.017 and the FOM increases from 1 to 26. At 738 nm, the FOM is expected to become macroscopically large, of the order of 106. This study demonstrates the possibility of fabricating an optical negative-index metamaterial that is not limited by the inherent loss in its metal constituent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the fabrication process.
Figure 2: SEM images of the fishnet structure at different fabrication stages.
Figure 3: Experimental results and simulation.
Figure 4: Simulation and determined parameters.

Similar content being viewed by others

References

  1. Veselago, V. G. The electrodynamics of substances with simultaneously negative value of ε and µ. Sov. Phys. Usp. 10, 509–514 (1968)

    Article  ADS  Google Scholar 

  2. Pendry, J. B. Negative refractive makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005)

    Article  ADS  Google Scholar 

  4. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007)

    Article  CAS  Google Scholar 

  6. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005)

    Article  ADS  Google Scholar 

  8. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2006)

    Article  ADS  Google Scholar 

  9. Tsakmakidis, K. L., Boardman, A. D. & Hess, O. ‘Trapped rainbow’ storage of light in metamaterials. Nature 450, 397–401 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Kildishev, A. V. & Shalaev, V. M. Engineering space for light via transformation optics. Opt. Lett. 33, 43–45 (2008)

    Article  ADS  Google Scholar 

  11. Pinchuk, A., Kreibig, U. & Hilger, A. Optical properties of metallic nanoparticles: influence of interface effects and interband transitions. Surf. Sci. 557, 269–280 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Drachev, V. P. et al. The Ag dielectric function in plasmonic metamaterials. Opt. Exp. 16, 1186–1195 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Noginov, M. A. et al. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt. Lett. 31, 3022–3024 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Ramakrishna, S. A. & Pendry, J. B. Removal of absorption and increase in resolution in a near-field lens via optical gain. Phys. Rev. B 67, 201101 (2003)

    Article  ADS  Google Scholar 

  15. Klar, T. A., Kildisher, A. V., Drachev, V. P. & Shalaev, V. M. Negative-index metamaterial: going optical. IEEE J. Sel. Top. Quantum Electron. 12, 1106–1115 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Sarychev, A. K. & Tartakovsky, G. Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser. Phys. Rev. B 75, 085436 (2007)

    Article  ADS  Google Scholar 

  17. Stockman, M. I. Criterion for negative refraction with low optical losses from a fundamental principle of causality. Phys. Rev. Lett. 98, 177404 (2007)

    Article  ADS  Google Scholar 

  18. Kinsler, P. & McCall, M. W. Causality-based criteria for a negative refractive index must be used with care. Phys. Rev. Lett. 101, 167401 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Wegener, M. et al. Toy model for plasmonic metamaterial resonances coupled to two-level system gain. Opt. Exp. 16, 19785–19788 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Fang, A., Koschny, Th., Wegener, M. & Soukoulis, C. M. Self-consistent calculation of metamaterial with gain. Phys. Rev. B 79, 241104 (2009)

    Article  ADS  Google Scholar 

  21. Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nature Photon. 2, 351–354 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Sivan, Y., Xiao, S., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Frequency-domain simulations of a negative-index material with embedded gain. Opt. Exp. 26, 24060–24074 (2009)

    Article  ADS  Google Scholar 

  23. Noginov, M. A. et al. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric media. Opt. Exp. 16, 1385–1392 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Stockman, M. I. The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004 (2010)

    Article  ADS  Google Scholar 

  26. Plum, E., Fedotov, V. A., Kuo, P., Tsai, D. P. & Zheludev, N. I. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt. Exp. 17, 8548–8551 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Xiao, S. et al. Yellow-light negative-index metamaterials. Opt. Lett. 34, 3478–3480 (2009)

    Article  ADS  CAS  Google Scholar 

  28. Kriegler, C. E., Rill, M. S., Linden, S. & Wegener, M. Bianisotropic photonic metamaterials. IEEE J. Sel. Top. Quantum Electron. 16, 367–375 (2010)

    Article  ADS  CAS  Google Scholar 

  29. Fromm, D. P. et al. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J. Chem. Phys. 124, 061101 (2006)

    Article  ADS  Google Scholar 

  30. Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible frequencies. Science 316, 430–432 (2007)

    Article  ADS  CAS  Google Scholar 

  31. Cai, W. et al. Metamagnetics with rainbow colors. Opt. Exp. 15, 3333–3341 (2007)

    Article  ADS  Google Scholar 

  32. Ku, Z., Dani, K. M., Upadhya, P. C. & Brueck, S. R. Bianisotropic negative-index metamaterial embedded in a symmetric medium. J. Opt. Soc. Am. B 26, B34–B38 (2009)

    Article  CAS  Google Scholar 

  33. Jackson, J. D. Classical Electrodynamics Ch. 7.10 (Wiley, 1975)

    MATH  Google Scholar 

  34. Cook, J. J. H., Tsakmakidis, K. L. & Hess, O. Ultralow-loss optical diamagnetism in silver nanoforests. J. Opt. A 11, 114026 (2009)

    Article  ADS  Google Scholar 

  35. Kildishev, A. V. et al. Negative refractive index in optics of metal-dielectric composites. J. Opt. Soc. Am. B 23, 423–433 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by ARO-MURI awards 50342-PH-MUR and W911NF-09-1-0539 and by NSF PREM grant no. DMR 0611430. The authors acknowledge valuable discussions with T. Klar. V.M.S. is grateful to Y. Sivan and Z. Jacob for their comments.

Author information

Authors and Affiliations

Authors

Contributions

S.X. fabricated the samples and conducted optical characterization and part of the numerical simulations; S.X. and V.P.D. assembled the set-up; V.P.D. guided the optical experiments and partly the numerical simulations and fabrication; A.V.K. guided the numerical simulations and developed a sample-specific analytical technique for retrieving the bianisotropic parameters; A.V.K. and X.N. performed numerical simulations; U.K.C. performed part of the numerical simulations and implemented parallelism in the design and retrieval optimization; H.-K.Y. suggested and developed the original fabrication approach; S.X., V.P.D., A.V.K., X.N. and V.M.S. wrote the manuscript; V.M.S. led the project and discussed the fabrication, optical characterization and numerical modelling.

Corresponding author

Correspondence to Vladimir M. Shalaev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-3 with legends. (PDF 146 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, S., Drachev, V., Kildishev, A. et al. Loss-free and active optical negative-index metamaterials. Nature 466, 735–738 (2010). https://doi.org/10.1038/nature09278

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09278

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing