ExLibris header image
SFX Logo
Title: Genome editing: The domestication of Cas9
Source:

Nature [0028-0836] Urnov, F yr:2016


Collapse list of basic services Basic
Full text
Full text available via Nature
GO
Document delivery
Request document via Library/Bibliothek GO
Users interested in this article also expressed an interest in the following:
1. Slaymaker, Ian M. "Rationally engineered Cas9 nucleases with improved specificity." Science 351.6268 (2015): 84-8. Link to SFX for this item
2. Oude Blenke, E. "CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential." Journal of controlled release 244.Pt B (2016): 139-148. Link to SFX for this item
3. Medcalf, Robert L. "The dynamics of adult haematopoiesis in the bone and bone marrow environment." British journal of haematology 170.4 (2015): 472-486. Link to Full Text for this item Link to SFX for this item
4. Vidigal, Joana A. "Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries." Nature communications 6.1 (2015): 8083-8083. Link to Full Text for this item Link to SFX for this item
5. Zhang, F. "Therapeutic genome editing: prospects and challenges." Nature medicine 21.2 (2015): 121-131. Link to SFX for this item
6. Liu, C. "Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications." Journal of controlled release 266.1 (2017): 17-26. Link to SFX for this item
7. Kleinstiver, Benjamin P. "High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects." Nature 529.7587 (2016): 490-495. Link to Full Text for this item Link to SFX for this item
8. Crosetto, N. "Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing." Nature Methods 10.4 (2013): 361-365. Link to SFX for this item
9. Yang, X. "Applications of CRISPR-Cas9 mediated genome engineering." Military Medical Research 2.1 (2015): 11-6. Link to Full Text for this item Link to SFX for this item
10. Jiang, F. "Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage." Science 351.6275 (2016): 867-871. Link to SFX for this item
11. Zhang, J. "Optimization of genome editing through CRISPR-Cas9 engineering." Bioengineered 7.3 (2016): 166-174. Link to Full Text for this item Link to SFX for this item
12. Lindsay Mosher, N. "Cancer gene therapy: innovations in therapeutic delivery of CRISPR-Cas9." Drug discovery today. 21: 17-21. Link to SFX for this item
13. Ran, Patrick A. "Genome engineering using the CRISPR-Cas9 system." Nature protocols 8.11 (2013): 2281-2308. Link to SFX for this item
14. Cong, David e. "Multiplex Genome Engineering Using CRISPR/Cas Systems." Science 339.6121 (2013): 819-823. Link to SFX for this item
15. Nandakumar, J. "A lentivirus-free inducible CRISPR-Cas9 system for efficient targeting of human genes." Analytical biochemistry. 530.C: 40-49. Link to SFX for this item
16. Tsai, Shengdar Q. "GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases." Nature biotechnology 33.2 (2014): 187-197. Link to SFX for this item
17. Joung, Jeffry K. "TALENs: a widely applicable technology for targeted genome editing." Nature reviews. Molecular cell biology 14.1 (2012): 49-55. Link to SFX for this item
18. Zetsche, B. "Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System." Cell 163.3 (2015): 1-771. Link to SFX for this item
19. Taoudi, S. "HAEMATOPOIESIS DURING EMBRYONIC DEVELOPMENT." Experimental hematology 41.8 (2013). Link to SFX for this item
20. Huang, H. "One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces." Acta Biochimica et Biophysica Sinica 47.4 (2015): 231-243. Link to Full Text for this item Link to SFX for this item
View More...
View Less...
Select All Clear All

Expand list of advanced services Advanced