The 2023 MDPI Annual Report has
been released!
 
14 pages, 2429 KiB  
Brief Report
Virological Traits of the SARS-CoV-2 BA.2.87.1 Lineage
by Lu Zhang, Alexandra Dopfer-Jablonka, Inga Nehlmeier, Amy Kempf, Luise Graichen, Noemí Calderón Hampel, Anne Cossmann, Metodi V. Stankov, Gema Morillas Ramos, Sebastian R. Schulz, Hans-Martin Jäck, Georg M. N. Behrens, Stefan Pöhlmann and Markus Hoffmann
Vaccines 2024, 12(5), 487; https://doi.org/10.3390/vaccines12050487 (registering DOI) - 01 May 2024
Abstract
Transmissibility and immune evasion of the recently emerged, highly mutated SARS-CoV-2 BA.2.87.1 are unknown. Here, we report that BA.2.87.1 efficiently enters human cells but is more sensitive to antibody-mediated neutralization than the currently dominating JN.1 variant. Acquisition of adaptive mutations might thus be [...] Read more.
Transmissibility and immune evasion of the recently emerged, highly mutated SARS-CoV-2 BA.2.87.1 are unknown. Here, we report that BA.2.87.1 efficiently enters human cells but is more sensitive to antibody-mediated neutralization than the currently dominating JN.1 variant. Acquisition of adaptive mutations might thus be needed for efficient spread in the population. Full article
(This article belongs to the Special Issue New Trends in SARS-CoV-2 Variants and Vaccines)
Show Figures

Figure 1

13 pages, 4687 KiB  
Article
O-Mannosyltransferase CfPmt4 Regulates the Growth, Development and Pathogenicity of Colletotrichum fructicola
by Di Yang, Lan Luo, Yadi Liu and He Li
J. Fungi 2024, 10(5), 330; https://doi.org/10.3390/jof10050330 (registering DOI) - 01 May 2024
Abstract
Camellia oleifera is a woody, edible-oil plant native to China. Anthracnose is the major disease of Ca. oleifera, and Colletotrichum fructicola is the main epidemic pathogen. Our previous research indicated that CfHac1 (homologous to ATF/CREB1) and CfGcn5 (general control nonderepressible 5, Gcn5) [...] Read more.
Camellia oleifera is a woody, edible-oil plant native to China. Anthracnose is the major disease of Ca. oleifera, and Colletotrichum fructicola is the main epidemic pathogen. Our previous research indicated that CfHac1 (homologous to ATF/CREB1) and CfGcn5 (general control nonderepressible 5, Gcn5) are integral to key cellular processes that govern fungal development and pathogenesis. Further transcriptomic analyses of the CfHac1 and CfGcn5 mutants, particularly under conditions of endoplasmic reticulum (ER) stress, hold the potential to unveil additional genes implicated in this critical cellular response. We identified all OST/PMT (oligosaccharyltransferase/Protein O-Mannosyltransferases) genes in C. fructicola and analyzed their expression levels. To elucidate novel glycosylation-related genes that may be important for the virulence of C. fructicola, we took an unbiased transcriptomic approach comparing wild-type and the ∆Cfhac1 mutant. Notably, all OST/PMT genes were induced by dithiothreitol and down-regulated in the ΔCfhac1 mutant, yet only the CfPMT4 (Protein O-Mannosyltransferases 4) gene (A04626) was unaffected in the ΔCfgcn5. The results of targeted gene deletion experiments indicate that CfPMT4 plays a crucial role in both vegetative growth and conidiation. Additionally, our investigation revealed that the ΔCfpmt4 exhibits deficiencies in appressorium formation, as well as in its response to cell wall integrity and endoplasmic reticulum stresses. Furthermore, the mutant displayed impaired glycogen metabolism, which may contribute to reduced penetration ability. Overall, CfPmt4, an O-mannosyltransferase, controls the growth, development, and pathogenicity of Colletotrichum fructicola. Understanding the function of the CfPMT4 homolog could provide a potential molecular target for controlling Ca. oleifera anthracnose. Full article
(This article belongs to the Special Issue Growth and Virulence of Plant Pathogenic Fungi)
Show Figures

Figure 1

20 pages, 11901 KiB  
Article
Which SDM Model, CLIMEX vs. MaxEnt, Best Forecasts Aeolesthes sarta Distribution at a Global Scale under Climate Change Scenarios?
by Umer Hayat, Juan Shi, Zhuojin Wu, Muhammad Rizwan and Muhammad Sajjad Haider
Insects 2024, 15(5), 324; https://doi.org/10.3390/insects15050324 (registering DOI) - 01 May 2024
Abstract
A precise evaluation of the risk of establishing insect pests is essential for national plant protection organizations. This accuracy is crucial in negotiating international trade agreements for forestry-related commodities, which have the potential to carry pests and lead to unintended introductions in the [...] Read more.
A precise evaluation of the risk of establishing insect pests is essential for national plant protection organizations. This accuracy is crucial in negotiating international trade agreements for forestry-related commodities, which have the potential to carry pests and lead to unintended introductions in the importing countries. In our study, we employed both mechanistic and correlative niche models to assess and map the global patterns of potential establishment for Aeolesthes sarta under current and future climates. This insect is a significant pest affecting tree species of the genus Populus, Salix, Acer, Malus, Juglans, and other hardwood trees. Notably, it is also categorized as a quarantine pest in countries where it is not currently present. The mechanistic model, CLIMEX, was calibrated using species-specific physiological tolerance thresholds, providing a detailed understanding of the environmental factors influencing the species. In contrast, the correlative model, maximum entropy (MaxEnt), utilized species occurrences and spatial climatic data, offering insights into the species’ distribution based on observed data and environmental conditions. The projected potential distribution from CLIMEX and MaxEnt models aligns well with the currently known distribution of A. sarta. CLIMEX predicts a broader global distribution than MaxEnt, indicating that most central and southern hemispheres are suitable for its distribution, excluding the extreme northern hemisphere, central African countries, and the northern part of Australia. Both models accurately predict the known distribution of A. sarta in the Asian continent, and their projections suggest a slight overall increase in the global distribution range of A. sarta with future changes in climate temperature, majorly concentrating in the central and northern hemispheres. Furthermore, the models anticipate suitable conditions in Europe and North America, where A. sarta currently does not occur but where its preferred host species, Populus alba, is present. The main environmental variables associated with the distribution of A. sarta at a global level were the average annual temperature and precipitation rate. The predictive models developed in this study offer insights into the global risk of A. sarta establishment and can be valuable for monitoring potential pest introductions in different countries. Additionally, policymakers and trade negotiators can utilize these models to make science-based decisions regarding pest management and international trade agreements. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

27 pages, 13669 KiB  
Article
Adaptive Nonsingular Fast Terminal Sliding Mode-Based Direct Yaw Moment Control for DDEV under Emergency Conditions
by Yixi Zhang, Jian Ma and Yang Zhou
Actuators 2024, 13(5), 170; https://doi.org/10.3390/act13050170 (registering DOI) - 01 May 2024
Abstract
This paper presents an innovative three-level direct yaw moment control strategy for distributed drive electric vehicles (DDEV) under emergency conditions. The phase plane analysis is used at the supervisory level to design the stability boundary function taking into account the impact of the [...] Read more.
This paper presents an innovative three-level direct yaw moment control strategy for distributed drive electric vehicles (DDEV) under emergency conditions. The phase plane analysis is used at the supervisory level to design the stability boundary function taking into account the impact of the road adhesion coefficient. To guarantee the performance of finite-time convergence and singularity-free methods, the adaptive nonsingular fast terminal sliding mode control (ANFTSMC) is developed at the decision level to determine the extra yaw moment for tracking the intended side slip angle and yaw rate. Among this, the unstable domain in the phase plane is further separated into moderately and severely unstable according to the degree of vehicle instability, which is defined by the distance between the state phase point and the stability boundary. Meanwhile, the adaptive weight between the handling and stability is obtained. At the executive level, the quadratic programming algorithm is adopted to allocate four-wheel torque with the objective of optimal tire utilization rate. Finally, the co-simulation test is executed in both closed-loop and open-loop circumstances; according to the simulation results, the presented ANFTSMC method outperforms the SMC, and it can decrease the tracking error and improve the handling and stability. Full article
(This article belongs to the Section Actuators for Land Transport)
Show Figures

Figure 1

7 pages, 2500 KiB  
Case Report
Posterior Occipitocervical Fixation and Intrathecal Baclofen Therapy for the Treatment of Basilar Invagination with Klippel–Feil Syndrome: A Case Report
by Hitoshi Tonomura, Masateru Nagae, Hidenobu Ishibashi, Kunihiko Hosoi, Takumi Ikeda, Yasuo Mikami and Kenji Takahashi
Medicina 2024, 60(5), 755; https://doi.org/10.3390/medicina60050755 (registering DOI) - 01 May 2024
Abstract
Klippel–Feil syndrome (KFS) is characterized by the congenital fusion of the cervical vertebrae and is sometimes accompanied by anomalies in the craniocervical junction. In basilar invagination (BI), which is a dislocation of the dens in an upper direction, compression of the brainstem and [...] Read more.
Klippel–Feil syndrome (KFS) is characterized by the congenital fusion of the cervical vertebrae and is sometimes accompanied by anomalies in the craniocervical junction. In basilar invagination (BI), which is a dislocation of the dens in an upper direction, compression of the brainstem and cervical cord results in neurological defects and surgery is required. A 16-year-old boy diagnosed with KFS and severe BI presented with spastic tetraplegia, opisthotonus and dyspnea. CT scans showed basilar impression, occipitalization of C1 and fusion of C2/C3. MRI showed ventral compression of the medullocervical junction. Posterior occipitocervical reduction and fusion along with decompression were performed. Paralysis gradually improved postoperatively over 3 weeks. However, severe spasticity and opisthotonus persisted and intrathecal baclofen (ITB) therapy was initiated. Following this, opisthotonus disappeared and spasticity of the extremities improved. Rehabilitation therapy continued by controlling the dose of ITB. Five years after the surgery, self-propelled wheelchair driving was achieved and activities of daily life improved. The treatment strategy for patients with BI and congenital anomalies remains controversial. Posterior reduction and internal fixation using instrumentation were effective techniques in this case. Spasticity control achieved through a combination of surgery and ITB treatment enabled the amelioration of therapeutic efficacy of rehabilitation and the improvement of ADL. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

12 pages, 655 KiB  
Article
Creating and Validating a Questionnaire for Assessing Dentists’ Self-Perception on Oral Healthcare Management—A Pilot Study
by Silviu Catalin Tibeica, Elena Raluca Baciu, Iulian Costin Lupu, Carina Balcos, Ionut Luchian, Dana Gabriela Budala, Andreea Tibeica, Zinovia Surlari and Elena Mihaela Carausu
Healthcare 2024, 12(9), 933; https://doi.org/10.3390/healthcare12090933 (registering DOI) - 01 May 2024
Abstract
Background and Objectives: Questionnaires designed to test knowledge and self-perception can be valuable tools for diagnosing a dentist’s understanding of the management and administration of a practice. The objective of this study was to create and authenticate a questionnaire for assessing dentists’ self-perception [...] Read more.
Background and Objectives: Questionnaires designed to test knowledge and self-perception can be valuable tools for diagnosing a dentist’s understanding of the management and administration of a practice. The objective of this study was to create and authenticate a questionnaire for assessing dentists’ self-perception on oral healthcare management developed from discussions with experts in this field. Material and Methods: In order to create and verify a questionnaire survey, a cross-sectional, descriptive, and analytical study was carried out. Participants’ personal information and 31 statements across four categories made up the final questionnaire form. The answers to the questionnaire were in the form of a Likert scale. After refining the initial version, a total of 36 interviews were conducted at dental offices to verify the validity. For the Exploratory Factor Analysis (EFA), we used the Kaiser–Meyer–Olkin (KMO) index, the Bartlett sphericity test, and also Cronbach alpha coefficient for the validity of the questionnaire. Results: The accuracy of the instrument was measured by intrarater and interrater reliability. For the EFA, all the communalities exceeded the threshold of 0.05. With a Cronbach’s alpha coefficient of 0.898, the questionnaire has sufficient internal consistency. Conclusions: The questionnaire demonstrates robust reliability and validity, thereby affirming its suitability for its intended purpose. Full article
(This article belongs to the Special Issue Assessment and Analysis of Healthcare Systems)
Show Figures

Figure 1

11 pages, 11157 KiB  
Case Report
Inadvertent Tooth Movement from a Bonded Mandibular Lingual Retainer—A Case Report with a Follow-Up 3D Analysis of Tooth Movement and a Microscopic Evaluation of the Wire
by Maciej Jedliński, Katarzyna Tandecka, Katarzyna Grocholewicz and Joanna Janiszewska-Olszowska
Appl. Sci. 2024, 14(9), 3889; https://doi.org/10.3390/app14093889 (registering DOI) - 01 May 2024
Abstract
Background: One of the rarest complications of fixed orthodontic retention is inadvertent tooth movement of the teeth bonded to the retainer. A 25-year-old patient presented at the orthodontist as she was preoccupied about the position of the lower teeth. The aim of this [...] Read more.
Background: One of the rarest complications of fixed orthodontic retention is inadvertent tooth movement of the teeth bonded to the retainer. A 25-year-old patient presented at the orthodontist as she was preoccupied about the position of the lower teeth. The aim of this case report was to present a follow-up of anterior teeth alignment after fixed retainer removal and to analyze the structure of the removed fixed orthodontic retainer in a patient suffering from a twist effect. Materials and Methods: The retainer that caused inadvertent movement has been removed, and subsequent teeth displacement was assessed with scan superimposition. The retainer structure and diameter were analyzed with a laser confocal microscope. Results: The superimposition showed significant improvements in the position of the teeth. The sole removal of the activated retainer resulted in a partial self-correction of the twist effect. Under microscopic observation, changes in the dimensions of the wire were found but were too small to cause significant changes in tooth position. Conclusions: A fixed retainer should always be removed when a twist effect is diagnosed. The wire sections covered with composite are less likely to untwist. In the presented case, the changes in the dimensions of the round retainer wire could not have led to changes in the teeth’s positions. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

38 pages, 3544 KiB  
Review
Methane Advances: Trends and Summary from Selected Studies
by Stephen Okiemute Akpasi, Joseph Samuel Akpan, Ubani Oluwaseun Amune, Ayodeji Arnold Olaseinde and Sammy Lewis Kiambi
Methane 2024, 3(2), 276-313; https://doi.org/10.3390/methane3020016 (registering DOI) - 01 May 2024
Abstract
The role of methane (CH4) in the 21st century presents a critical dilemma. Its abundance and clean-burning nature make it a promising energy source, while its potent greenhouse effect threatens climate stability. Despite its potent greenhouse gas (GHG) nature, CH4 [...] Read more.
The role of methane (CH4) in the 21st century presents a critical dilemma. Its abundance and clean-burning nature make it a promising energy source, while its potent greenhouse effect threatens climate stability. Despite its potent greenhouse gas (GHG) nature, CH4 remains a crucial energy resource. However, advancements in CH4 capture, utilization, and emissions mitigation are rapidly evolving, necessitating a critical assessment of the advances, their potential, and challenges. This study aims to comprehensively evaluate the current state of the art in these advancements, particularly focusing on the emissions trends, with corresponding global warming potentials of projected CH4 emissions, and a discussion on the advances that have been made towards reducing the impacts of CH4 emissions. The areas of these advances include measurement, computational, numerical modeling, and simulation studies for CH4, emerging technologies for CH4 production, management and control, the nexus of CH4 –X, and case study applications in countries. This study reports on these advances, which involves a technical review of studies, mainly from the last decade, discussing the technical feasibility, economic viability, and environmental impact of these advancements. Our trend analysis reveals that even though the share of CH4 in the GHG mix has been around 19% compared with carbon dioxide (CO2), still, CH4 reduction would need to be highly subsidized because of the high global warming potential it has, compared with CO2. We conclude that while significant progress has been made, further research and development are essential to optimize the performance, scalability, and affordability of these advancements. Additionally, robust policy frameworks and international collaborations are crucial to ensure widespread adoption and maximize the potential that comes with the advancements in the mitigation of the impact of CH4 emission. This study contributes to the ongoing dialogue on balancing the potentials of CH4 with its environmental footprint, paving the way for a future where this versatile resource can be utilized sustainably. Full article
Show Figures

Figure 1

14 pages, 289 KiB  
Article
Occurrence of Antimicrobial-Resistant Enterococcus spp. in Healthy Chickens Never Exposed to Antimicrobial Agents in Central Italy
by Giulia Cagnoli, Alessia Di Paolo, Fabrizio Bertelloni, Sonia Salvucci, Arianna Buccioni, Margherita Marzoni Fecia di Cossato and Valentina Virginia Ebani
Antibiotics 2024, 13(5), 417; https://doi.org/10.3390/antibiotics13050417 (registering DOI) - 01 May 2024
Abstract
Enterococci are part of the natural flora of the gastrointestinal tract of mammals, including humans, birds and invertebrates. They can cause infection, mainly among hospitalized patients, as well as acquire and transfer antimicrobial resistance genes. The present study allowed the isolation of 98 [...] Read more.
Enterococci are part of the natural flora of the gastrointestinal tract of mammals, including humans, birds and invertebrates. They can cause infection, mainly among hospitalized patients, as well as acquire and transfer antimicrobial resistance genes. The present study allowed the isolation of 98 Enterococcus (73.47% E. faecium, 23.47% E. faecalis, 3.06% E. avium) strains from 120-day-old healthy chickens that had never been treated with antimicrobials. Their antimicrobial resistance was evaluated by the agar disk diffusion method; high-level aminoglycoside (streptomycin and gentamicin) and vancomycin resistance were established using the microbroth dilution method. The highest percentages of resistant isolates were detected with quinupristin–dalfopristin (88.78%), rifampicin (64.29%), tetracyclines (45.92%), and enrofloxacin (41.84%). High percentages of susceptible strains were found with teicoplanin (100%), amoxicillin–clavulanic acid (97.96%), nitrofurantoin (94.90%), ampicillin (92.86%), chloramphenicol (90.82%), and linezolid (88.78%). About 60% of the strains were classified as MDR (multidrug-resistant). Moreover, PCR was carried out to investigate genes encoding for tetracyclines resistance determinants: tet(M), tet(L), tet(O), tet(K), and Int-Tn. Genes were detected in 68 (69.38%) strains: 36 were shown to be resistant with the agar disk diffusion method, while 28 were intermediate, and 2 were susceptible. The present study showed that chickens never treated with antimicrobials potentially harbor enterococci having phenotypic and genotypic characters of antimicrobial resistance. Full article
(This article belongs to the Special Issue Detection of Bacteria and Antibiotics Surveillance in Livestock)
21 pages, 4666 KiB  
Article
Neuroretinal Cell Culture Model as a Tool for the Development of New Therapeutic Approaches for Oxidative Stress-Induced Ocular Diseases, with a Focus on Glaucoma
by Kristian Nzogang Fomo, Natarajan Perumal, Caroline Manicam, Norbert Pfeiffer and Franz H. Grus
Cells 2024, 13(9), 775; https://doi.org/10.3390/cells13090775 (registering DOI) - 01 May 2024
Abstract
Glaucoma is a heterogeneous group of optic neuropathies characterized by a progressive degeneration of the retinal ganglion cells (RGCs), leading to irreversible vision loss. Nowadays, the traditional therapeutic approach to glaucoma consists of lowering the intraocular pressure (IOP), which does not address the [...] Read more.
Glaucoma is a heterogeneous group of optic neuropathies characterized by a progressive degeneration of the retinal ganglion cells (RGCs), leading to irreversible vision loss. Nowadays, the traditional therapeutic approach to glaucoma consists of lowering the intraocular pressure (IOP), which does not address the neurodegenerative features of the disease. Besides animal models of glaucoma, there is a considerable need for in vitro experimental models to propose new therapeutic strategies for this ocular disease. In this study, we elucidated the pathological mechanisms leading to neuroretinal R28 cell death after exposure to glutamate and hydrogen peroxide (H2O2) in order to develop new therapeutic approaches for oxidative stress-induced retinal diseases, including glaucoma. We were able to show that glutamate and H2O2 can induce a decrease in R28 cell viability in a concentration-dependent manner. A cell viability of about 42% was found after exposure to 3 mM of glutamate and about 56% after exposure to 100 µM of H2O2 (n = 4). Label-free quantitative mass spectrometry analysis revealed differential alterations of 193 and 311 proteins in R28 cells exposed to 3 mM of glutamate and 100 µM of H2O2, respectively (FDR < 1%; p < 0.05). Bioinformatics analysis indicated that the protein changes were associated with the dysregulation of signaling pathways, which was similar to those observed in glaucoma. Thus, the proteomic alteration induced by glutamate was associated with the inhibition of the PI3K/AKT signaling pathway. On the other hand, H2O2-induced toxicity in R28 cells was linked to the activation of apoptosis signaling and the inhibition of the mTOR and ERK/MAPK signaling pathways. Furthermore, the data show a similarity in the inhibition of the EIF2 and AMPK signaling pathways and the activation of the sumoylation and WNT/β-catenin signaling pathways in both groups. Our findings suggest that the exposure of R28 cells to glutamate and H2O2 could induce glaucoma-like neurodegenerative features and potentially provide a suitable tool for the development of new therapeutic strategies for retinal diseases. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

25 pages, 2202 KiB  
Article
Developing Small-Cargo Flows in Cities Using Unmanned Aerial Vehicles
by Aldona Jarašūnienė, Margarita Išoraitė and Artūras Petraška
Future Transp. 2024, 4(2), 450-474; https://doi.org/10.3390/futuretransp4020022 (registering DOI) - 01 May 2024
Abstract
Modern technology allows for the simplification of a number of functions in industry and business. Many companies have achieved a high level of robotisation and automation in the use of services, including companies operating in the transport sector, where smart systems help to [...] Read more.
Modern technology allows for the simplification of a number of functions in industry and business. Many companies have achieved a high level of robotisation and automation in the use of services, including companies operating in the transport sector, where smart systems help to control load planning, the issuing of documents, the tracking and transportation of shipments, etc. Drones can be exploited as smart assistants in delivering cargo in cities. Since it is a new technology capable of working autonomously, it presents various legal, psychological, and physical challenges. This article presents an analysis of the scientific literature on the development of small-cargo flows using drones and a research methodology on the development of the use of drones, presenting a model which helps to address the issue of cargo delivery in cities. Full article
Show Figures

Figure 1

12 pages, 3967 KiB  
Article
Utilization of Multi-Ionic Interaction of Yumoto Hot Springs for Enhancing the Moisturizing Properties of Hyaluronic Acid Sodium Salt
by Keita Nakajima, Tu Minh Tran Vo and Nur Adlin
Polysaccharides 2024, 5(2), 100-111; https://doi.org/10.3390/polysaccharides5020008 (registering DOI) - 01 May 2024
Abstract
Hot spring (HS) waters manifest diverse positive effects on the skin due to their unique chemical compositions. Sodium hyaluronate acid (HA) comprises N-acetylglucosamine and D-glucuronic acid, and distinguishes itself with superior qualities in skin regeneration, providing moisturizing and anti-aging benefits. The combination of [...] Read more.
Hot spring (HS) waters manifest diverse positive effects on the skin due to their unique chemical compositions. Sodium hyaluronate acid (HA) comprises N-acetylglucosamine and D-glucuronic acid, and distinguishes itself with superior qualities in skin regeneration, providing moisturizing and anti-aging benefits. The combination of HA with HS water is widely applied across ophthalmology, pneumology, nutrition, and cosmetics. This study delved into the application of HA in cosmetology, with a focus on its interaction with HS water and its effects on moisture retention and promoting wound healing. In particular, with the alkaline pH levels of the Yumoto HS, HA molecules may undergo dissociation to be ionized resulting in a negatively charged polymer and interacting with positively charged ions in the HS water through electrostatic interactions. The shifted peaks in the FTIR result and zeta potential shifts to a less negative region in the case of HA-HS compared to HA-DI indicate an ionic interaction between HS water and HA. Moisture tests confirmed the sustained hydration when HA is dissolved in HS water, underscoring its potential to improve skin hydration at certain concentrations, specifically at 0.5% and 1%. Additionally, MTT assay results demonstrated that HS water stimulates the growth of fibroblast cells compared to distilled water, implying its potential beneficial effect in wound healing. These findings suggested the multifaceted benefits of HAHS in skincare, highlighting its role in enhancing skin hydration and potentially accelerating wound healing processes, thus presenting avenues for the development of advanced cosmeceutical formulations. Full article
Show Figures

Figure 1

12 pages, 1486 KiB  
Article
A Novel Radar Cross-Section Calculation Method Based on the Combination of the Spectral Element Method and the Integral Method
by Hongyu Zhao, Jingying Chen, Mingwei Zhuang, Xiaofan Yang and Jianliang Zhuo
Symmetry 2024, 16(5), 542; https://doi.org/10.3390/sym16050542 (registering DOI) - 01 May 2024
Abstract
This article proposes a novel method for calculating radar cross-sections (RCSs) that combines the spectral element method and the integral method, allowing for RCS calculations at any position in a free space or a half-space. This approach replaces the field source with an [...] Read more.
This article proposes a novel method for calculating radar cross-sections (RCSs) that combines the spectral element method and the integral method, allowing for RCS calculations at any position in a free space or a half-space. This approach replaces the field source with an incident field using the scattered field equation of the spectral element method, enabling the arbitrary placement of the field source without being limited by the computational domain. By applying the superposition theorem and the volume equivalence principle, the scattered field of the objects at any position is obtained through integral equations, eliminating limitations on the computation points imposed by the computational domain. Based on Green’s function’s important role throughout the calculation process and its symmetry properties, the RCS calculation of symmetric models will be more advantageous. Finally, several examples, including symmetry models, are provided to validate both the feasibility and accuracy of this proposed method. Full article
13 pages, 934 KiB  
Article
Evaluating the Water Quality of the Keddara Dam (Algeria) Using Water Quality Indices
by Tosin Sarah Fashagba, Madani Bessedik, Nadia Badr ElSayed, Chérifa Abdelbaki and Navneet Kumar
Water 2024, 16(9), 1291; https://doi.org/10.3390/w16091291 (registering DOI) - 01 May 2024
Abstract
Dams are regarded as crucial pieces of structure that store water for irrigation and municipal uses. Given their vital role, the dam’s water quality assessment is considered to be an important criterion and requires constant monitoring. In this research, we attempted to use [...] Read more.
Dams are regarded as crucial pieces of structure that store water for irrigation and municipal uses. Given their vital role, the dam’s water quality assessment is considered to be an important criterion and requires constant monitoring. In this research, we attempted to use two water quality indices (WQIs) methods to assess the water quality of the Keddara Dam, which is located on the Boudouaou River, Algeria, using eleven water quality parameters (temperature, pH, conductivity, turbidity, total suspended solids (TSS), full alkalimetric title (TAC), hydrometric title (TH), nitrite ions (NO2−), nitrate ions (NO3−), ammonium ions (NH4+), and phosphate ions (PO43−)) for data recorded from 29 December 2018 to 3 June 2021. Application of The Canadian Council of Ministers of the Environment (CCME) WQIs and the Weighted Arithmetic Method (WAM) indicated that the Keddara Dam’s water quality parameters were within the WHO’s permissible level, except for the conductivity and turbidity values. The results of the CCME WQI ranged from acceptable (81.92) to excellent (95.08) quality, whereas the WAM WQI ranged from 9.52 to 17.77, indicating excellent quality. This demonstrates that the Keddara Dam is appropriate for agriculture and municipal use. The water quality indices (WQIs) methods are recommended as valuable tools that allow both the public and decision-makers to comprehend and manage the water quality of any aquatic environment by providing flexibility in choosing variables. Full article
(This article belongs to the Special Issue Water Quality Assessment of River Basins)
Show Figures

Figure 1

31 pages, 846 KiB  
Review
A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health
by Zachary Shea, Matheus Ogando do Granja, Elizabeth B. Fletcher, Yaojie Zheng, Patrick Bewick, Zhibo Wang, William M. Singer and Bo Zhang
Curr. Issues Mol. Biol. 2024, 46(5), 4203-4233; https://doi.org/10.3390/cimb46050257 (registering DOI) - 01 May 2024
Abstract
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary [...] Read more.
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources—soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security. Full article
12 pages, 715 KiB  
Article
Impact of the Universal Implementation of Adolescent Hepatitis B Vaccination in Spain
by Angela Domínguez, Ana Avellón, Victoria Hernando, Núria Soldevila, Eva Borràs, Ana Martínez, Conchita Izquierdo, Núria Torner, Carles Pericas, Cristina Rius and Pere Godoy
Vaccines 2024, 12(5), 488; https://doi.org/10.3390/vaccines12050488 (registering DOI) - 01 May 2024
Abstract
The aim of this study was to analyse the impact of the introduction of universal adolescent HBV vaccination on the incidence of acute hepatitis B virus (HBV) infections. Acute HBV cases reported to the Spanish National Epidemiological Surveillance Network between 2005 and 2021 [...] Read more.
The aim of this study was to analyse the impact of the introduction of universal adolescent HBV vaccination on the incidence of acute hepatitis B virus (HBV) infections. Acute HBV cases reported to the Spanish National Epidemiological Surveillance Network between 2005 and 2021 were included. For regions starting adolescent vaccination in 1991–1993 and in 1994–1996, HBV incidence rates were compared by calculating the incidence rate ratio (IRR) and 95% confidence interval (CI). We also analysed the 2017 Spanish national seroprevalence survey data. The overall acute HBV incidence per 100,000 persons was 1.54 in 2005 and 0.64 in 2021 (p < 0.001). The incidence in 2014–2021 was lower for regions that started adolescent vaccination in 1991–1993 rather than in 1994–1996 (IRR 0.76; 95% CI 0.72–0.83; p < 0.001). In the 20–29 age group, incidence in regions that started adolescent vaccination in 1991–1993 was also lower (IRR 0.87; 95% CI 0.77–0.98; p = 0.02 in 2005–2013 and IRR 0.71; 95% CI 0.56–0·90; p < 0.001 in 2014–2021). Anti-HBc prevalence in the 35–39 age group was lower in the regions that started vaccination earlier, although the difference was not statistically significant (p = 0.09). Acute HBV incidence decreased more in the young adult population in regions that began adolescent vaccination earlier. Maintaining high universal vaccination coverage in the first year of life and in at-risk groups is necessary to achieve HBV elimination by 2030. Full article
(This article belongs to the Special Issue Feature Papers of Hepatitis A, B, C and E Vaccines)
Show Figures

Figure 1

16 pages, 9544 KiB  
Article
Personalized Federated Learning Incorporating Adaptive Model Pruning at the Edge
by Yueying Zhou, Gaoxiang Duan, Tianchen Qiu, Lin Zhang, Li Tian, Xiaoying Zheng and Yongxin Zhu
Electronics 2024, 13(9), 1738; https://doi.org/10.3390/electronics13091738 (registering DOI) - 01 May 2024
Abstract
Edge devices employing federated learning encounter several obstacles, including (1) the non-independent and identically distributed (Non-IID) nature of client data, (2) limitations due to communication bottlenecks, and (3) constraints on computational resources. To surmount the Non-IID data challenge, personalized federated learning has been [...] Read more.
Edge devices employing federated learning encounter several obstacles, including (1) the non-independent and identically distributed (Non-IID) nature of client data, (2) limitations due to communication bottlenecks, and (3) constraints on computational resources. To surmount the Non-IID data challenge, personalized federated learning has been introduced, which involves training tailored networks at the edge; nevertheless, these methods often exhibit inconsistency in performance. In response to these concerns, a novel framework for personalized federated learning that incorporates adaptive pruning of edge-side data is proposed in this paper. This approach, through a two-staged pruning process, creates customized models while ensuring strong generalization capabilities. Concurrently, by utilizing sparse models, it significantly condenses the model parameters, markedly diminishing both the computational burden and communication overhead on edge nodes. This method achieves a remarkable compression ratio of 3.7% on the Non-IID dataset FEMNIST, with the training accuracy remaining nearly unaffected. Furthermore, the total training duration is reduced by 46.4% when compared with the standard baseline method. Full article
(This article belongs to the Special Issue AI for Edge Computing)
Show Figures

Figure 1

9 pages, 2039 KiB  
Brief Report
Malian Children’s Core Gut Mycobiome
by Abdourahim Abdillah, Aly Kodio and Stéphane Ranque
Microorganisms 2024, 12(5), 926; https://doi.org/10.3390/microorganisms12050926 (registering DOI) - 01 May 2024
Abstract
Because data on the fungal gut community structure of African children are scarce, we aimed to describe it by reanalysing rRNA ITS1 and ITS2 metabarcoding data from a study designed to assess the influence of microbiota in malaria susceptibility in Malian children from [...] Read more.
Because data on the fungal gut community structure of African children are scarce, we aimed to describe it by reanalysing rRNA ITS1 and ITS2 metabarcoding data from a study designed to assess the influence of microbiota in malaria susceptibility in Malian children from the Dogon country. More specifically, we aimed to establish the core gut mycobiome and compare the gut fungal community structure of breastfed children, aged 0–2 years, with other age groups. Briefly, DNA was extracted from 296 children’s stool samples. Both rRNA ITS1 and ITS2 genomic barcodes were amplified and subjected to Illumina MiSeq sequencing. The ITS2 barcode generated 1,975,320 reads and 532 operational taxonomic units (OTUs), while the ITS1 barcode generated 647,816 reads and 532 OTUs. The alpha diversity was significantly higher by using the ITS1 compared to the ITS2 barcode (p < 0.05); but, regardless of the ITS barcode, we found no significant difference between breastfed children, aged 0–2 years, compared to the other age groups. The core gut mycobiome of the Malian children included Saccharomyces cerevisiae, Candida albicans, Pichia kudriavzevii, Malassezia restricta, Candida tropicalis and Aspergillus section Aspergillus, which were present in at least 50% of the 296 children. Further studies in other African countries are warranted to reach a global view of African children’s core gut mycobiome. Full article
(This article belongs to the Special Issue Gut Microbiome and Children’s Health)
Show Figures

Figure 1

24 pages, 8738 KiB  
Article
Characterization of Quaternary-Ammonium-Based Ionogel Membranes for Application in Proton Exchange Membrane Fuel Cells
by Eduardo Iniesta-López, Adrián Hernández-Fernández, Ángel Martínez-López, Yolanda Garrido, Antonia Pérez de los Ríos and Francisco José Hernández-Fernández
Gels 2024, 10(5), 308; https://doi.org/10.3390/gels10050308 (registering DOI) - 01 May 2024
Abstract
In recent years, the quest to advance fuel cell technologies has intensified, driven by the imperative to reduce reliance on hydrocarbon-derived fuels and mitigate pollutant emissions. Proton exchange membranes are a critical material of fuel cell technologies. The potential of ionic liquid-based polymer [...] Read more.
In recent years, the quest to advance fuel cell technologies has intensified, driven by the imperative to reduce reliance on hydrocarbon-derived fuels and mitigate pollutant emissions. Proton exchange membranes are a critical material of fuel cell technologies. The potential of ionic liquid-based polymer inclusion membranes or ionogels for proton exchange membrane fuel cells (PEMFCs) has recently appeared. Thermal stability, SEM-EDX characterization, NMR and IR characterization, thermogravimetric analysis, ion exchange capacity, and water uptake are key properties of these membranes which need to be investigated. In this work, ionogel based on quaternary ammonium salts, such as [N8,8,8,1+][Cl], [N8,8,8,1+][Br], and [N8-10,8-10,8-10,1+][Cl] in various compositions with poly(vinyl chloride) are extensively studied and characterized based on those key properties. The best properties were obtained when a quaternary ammonium cation was combined with a bromide anion. Finally, ionogels are tested in microbial fuel cells. Microbial fuel cells based on the ionogel reach a maximum of 147 mW/m2, which represents 55% of the reference membrane (Nafion 212). These results indicate that we still have the possibility of improvement through the appropriate selection of the cation and anion of the ionic liquid. Overall, the promise of ionogel membranes as a viable alternative in fuel cell applications has been demonstrated. Full article
(This article belongs to the Special Issue Synthetic, Natural and Hybrid Gels Intended for Various Applications)
Show Figures

Figure 1

13 pages, 1237 KiB  
Article
Long-Term Follow-Up after Laser-Assisted Pulmonary Metastasectomy Shows Complete Lung Function Recovery
by Daniel Baum, Axel Rolle, Dirk Koschel, Lysann Rostock, Rahel Decker, Monika Sombati, Florian Öhme and Till Plönes
Cancers 2024, 16(9), 1762; https://doi.org/10.3390/cancers16091762 (registering DOI) - 01 May 2024
Abstract
Preserving maximum lung function is a fundamental goal of parenchymal-sparing pulmonary laser surgery. Long-term studies for follow-up of lung function after pulmonary laser metastasectomy are lacking. However, a sufficient postoperative lung function is essential for quality of life and reduces potential postoperative complications. [...] Read more.
Preserving maximum lung function is a fundamental goal of parenchymal-sparing pulmonary laser surgery. Long-term studies for follow-up of lung function after pulmonary laser metastasectomy are lacking. However, a sufficient postoperative lung function is essential for quality of life and reduces potential postoperative complications. In this study, we investigate the extent of loss in lung function following pulmonary laser resection after three, six, and twelve months. We conducted a retrospective analysis using a prospective database of 4595 patients, focusing on 126 patients who underwent unilateral pulmonary laser resection for lung metastases from 1996 to 2022 using a 1318 nm Nd:YAG laser or a high-power pure diode laser. Results show that from these patients, a median of three pulmonary nodules were removed, with 75% presenting central lung lesions and 25% peripheral lesions. The median preoperative FEV1 was 98% of the predicted value, decreasing to 71% postoperatively but improving to 90% after three months, 93% after six months, and 96% after twelve months. Statistical analysis using the Friedman test indicated no significant difference in FEV1 between preoperative levels and those at six and twelve months post-surgery. The findings confirm that pulmonary laser surgery effectively preserves lung function over time, with patients generally regaining their preoperative lung function within a year, regardless of the metastases’ location. Full article
Show Figures

Figure 1

16 pages, 472 KiB  
Article
Resilient Integrated Control for AIOT Systems under DoS Attacks and Packet Loss
by Xiaoya Cao, Wenting Wang, Zhenya Chen, Xin Wang and Ming Yang
Electronics 2024, 13(9), 1737; https://doi.org/10.3390/electronics13091737 (registering DOI) - 01 May 2024
Abstract
This paper addresses bandwidth limitations resulting from Denial-of-Service (DoS) attacks on Artificial Intelligence of Things (AIOT) systems, with a specific focus on adverse network conditions. First, to mitigate the impact of DoS attacks on system bandwidth, a novel model predictive control combined with [...] Read more.
This paper addresses bandwidth limitations resulting from Denial-of-Service (DoS) attacks on Artificial Intelligence of Things (AIOT) systems, with a specific focus on adverse network conditions. First, to mitigate the impact of DoS attacks on system bandwidth, a novel model predictive control combined with a dynamic time-varying quantization interval adjustment technique is designed for the encoder–decoder architecture of AIOT systems. Second, the network state is modeled to represent a Markov chain under suboptimal network conditions. Furthermore, to guarantee the stability of AIOT systems under random packet loss, a Kalman filter algorithm is applied to precisely estimate the system state. By leveraging the Lyapunov stability theory, the maximum tolerable probability of random packet loss is determined, thereby enhancing the system’s resilient operation. Simulation results validate the effectiveness of the proposed method in dealing with DoS attacks and adverse network conditions. Full article
Show Figures

Figure 1

11 pages, 8746 KiB  
Article
Group Control of Photo-Responsive Colloidal Motors with a Structured Light Field
by Dianyang Li, Huan Wei, Hui Fang and Yongxiang Gao
Photonics 2024, 11(5), 421; https://doi.org/10.3390/photonics11050421 (registering DOI) - 01 May 2024
Abstract
Using structured light to drive colloidal motors, due to its advantages of remote manipulation, energy tunability, programmability, and the controllability of spatiotemporal distribution, has been attracting much attention in the fields of targeted drug delivery, environmental control, chemical agent detection, and smart device [...] Read more.
Using structured light to drive colloidal motors, due to its advantages of remote manipulation, energy tunability, programmability, and the controllability of spatiotemporal distribution, has been attracting much attention in the fields of targeted drug delivery, environmental control, chemical agent detection, and smart device design. Here, we focus on studying the group control of colloidal motors made from a photo-responsive organic polymer molecule NO-COP (N,O-Covalent organic polymer). These colloidal motors mainly respond to light intensity patterns. Considering its merits of fast refreshing speed, good programmability, and high-power threshold, we chose a digital micromirror device (DMD) to modulate the structured light field shining on the sample. It was found that under ultraviolet or green light modulation, such colloidal motors exhibit various group behaviors including group spreading, group patterning, and group migration. A qualitative interpretation is also provided for these observations. Full article
(This article belongs to the Special Issue Emerging Topics in Structured Light)
Show Figures

Figure 1

22 pages, 16578 KiB  
Article
YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea
by Rong Ye, Guoqi Shao, Yun He, Quan Gao and Tong Li
Sensors 2024, 24(9), 2896; https://doi.org/10.3390/s24092896 (registering DOI) - 01 May 2024
Abstract
In order to efficiently identify early tea diseases, an improved YOLOv8 lesion detection method is proposed to address the challenges posed by the complex background of tea diseases, difficulty in detecting small lesions, and low recognition rate of similar phenotypic symptoms. This method [...] Read more.
In order to efficiently identify early tea diseases, an improved YOLOv8 lesion detection method is proposed to address the challenges posed by the complex background of tea diseases, difficulty in detecting small lesions, and low recognition rate of similar phenotypic symptoms. This method focuses on detecting tea leaf blight, tea white spot, tea sooty leaf disease, and tea ring spot as the research objects. This paper presents an enhancement to the YOLOv8 network framework by introducing the Receptive Field Concentration-Based Attention Module (RFCBAM) into the backbone network to replace C2f, thereby improving feature extraction capabilities. Additionally, a mixed pooling module (Mixed Pooling SPPF, MixSPPF) is proposed to enhance information blending between features at different levels. In the neck network, the RepGFPN module replaces the C2f module to further enhance feature extraction. The Dynamic Head module is embedded in the detection head part, applying multiple attention mechanisms to improve multi-scale spatial location and multi-task perception capabilities. The inner-IoU loss function is used to replace the original CIoU, improving learning ability for small lesion samples. Furthermore, the AKConv block replaces the traditional convolution Conv block to allow for the arbitrary sampling of targets of various sizes, reducing model parameters and enhancing disease detection. the experimental results using a self-built dataset demonstrate that the enhanced YOLOv8-RMDA exhibits superior detection capabilities in detecting small target disease areas, achieving an average accuracy of 93.04% in identifying early tea lesions. When compared to Faster R-CNN, MobileNetV2, and SSD, the average precision rates of YOLOv5, YOLOv7, and YOLOv8 have shown improvements of 20.41%, 17.92%, 12.18%, 12.18%, 10.85%, 7.32%, and 5.97%, respectively. Additionally, the recall rate (R) has increased by 15.25% compared to the lowest-performing Faster R-CNN model and by 8.15% compared to the top-performing YOLOv8 model. With an FPS of 132, YOLOv8-RMDA meets the requirements for real-time detection, enabling the swift and accurate identification of early tea diseases. This advancement presents a valuable approach for enhancing the ecological tea industry in Yunnan, ensuring its healthy development. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop