• Open Access

Exploring axionlike particles beyond the canonical setup

Gonzalo Alonso-Álvarez and Joerg Jaeckel
Phys. Rev. D 98, 023539 – Published 27 July 2018

Abstract

Axionlike particles (ALPs) are interesting dark matter candidates from both the theoretical and the experimental perspective. Usually they are motivated as pseudo-Nambu-Goldstone bosons. In this case one of their most important features is that their coupling to other particles is suppressed by a large scale, the vacuum expectation value of the field breaking the symmetry that gives rise to them. This naturally endows them with very weak interactions but also restricts the maximal field value and therefore the regions where sufficient dark matter is produced. In this paper we investigate deviations from this simplest setup, where the potential and interactions are as expected for a pseudo-Nambu-Goldstone boson, but the kinetic term has singularities. This leads to a significantly increased area in parameter space where such particles can be dark matter and can be probed by current and near future experiments. We discuss cosmological limits and in the course of this give a simple derivation of a formula for isocurvature fluctuations in models with general anharmonic potentials. As an application of this formula we give an update of the isocurvature constraints for QCD axion dark matter models, using the most recent results for the QCD topological susceptibility and the newest Planck data.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 26 April 2018

DOI:https://doi.org/10.1103/PhysRevD.98.023539

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & FieldsGravitation, Cosmology & Astrophysics

Authors & Affiliations

Gonzalo Alonso-Álvarez and Joerg Jaeckel

  • Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 98, Iss. 2 — 15 July 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×