ExLibris header image
SFX Logo
Title: Superfluid Brillouin optomechanics
Source:

Nature Physics [1745-2473] yr:2017


Collapse list of basic services Basic
Sorry, no full text available...
Please use the document delivery service (see below)  
Holding information
Holdings in library search engine ALBERT GO
Document delivery
Request document via Library/Bibliothek GO
Users interested in this article also expressed an interest in the following:
1. Guo, H. "Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators." Nature Physics 13.1 (2016): 94-102. Link to SFX for this item
2. Stern, A. "Quantum optics: Photons taught new tricks." Nature Physics 13.2 (2016): 110-111. Link to SFX for this item
3. Yu, M. "Mode-locked mid-infrared frequency combs in a silicon microresonator." Optica 3.8 (2016): 854-860. Link to SFX for this item
4. Xue, X. "Mode-locked dark pulse Kerr combs in normal-dispersion microresonators." Nature photonics 9.9 (2015): 594-600. Link to SFX for this item
5. Roelli, P. "Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering." Nature nanotechnology 11.2 (2015): 164-169. Link to SFX for this item
6. Herr, T. "Temporal solitons in optical microresonators." Nature photonics 8.2 (2014): 145-152. Link to SFX for this item
7. Herr, T. "Mode spectrum and temporal soliton formation in optical microresonators." Physical review letters 113.12 (2014): 123901-. Link to Full Text for this item Link to SFX for this item
8. Cole, Daniel C. "Soliton crystals in Kerr resonators." Nature photonics 11.10 (2017): 671-676. Link to SFX for this item
9. "Dissipative Kerr solitons and Cherenkov radiation in optical microresonators with third-order dispersion." Physical review. A. 95.3. Link to SFX for this item
10. Stark, T. "MEMS Tunable Mid-Infrared Plasmonic Spectrometer." ACS Photonics 3.1 (2016): 14-19. Link to Full Text for this item Link to SFX for this item
11. Xue, X. "Normal-dispersion microresonator Kerr frequency combs." Nano-Photonics 5.2 (2016): 244-262. Link to SFX for this item
12. Akhmediev, N. "APPLIED OPTICS. How Cherenkov radiative losses can improve optical frequency combs." Science 351.6271 (2016): 340-341. Link to SFX for this item
13. Zheng, Y. "Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection." Nature Communications 6.1 (2015): 8797-8797. Link to Full Text for this item Link to SFX for this item
14. Wilson, D. J. J. "Measurement-based control of a mechanical oscillator at its thermal decoherence rate." Nature 524.7565 (2015): 325-329. Link to Full Text for this item Link to SFX for this item
15. Hanske, C. "Strongly Coupled Plasmonic Modes on Macroscopic Areas via Template-Assisted Colloidal Self-Assembly." Nano letters 14.12 (2014): 6863-6871. Link to Full Text for this item Link to SFX for this item
16. Matsko, A B. "Mode-locked Kerr frequency combs." Optics letters 36.15 (2011): 2845-2847. Link to SFX for this item
17. Herr, T. "Universal formation dynamics and noise of Kerr-frequency combs in microresonators." Nature photonics 6.7 (2012): 480-487. Link to SFX for this item
18. Maleki, L. "Normal group-velocity dispersion Kerr frequency comb." Optics letters 37.1 (2012): 43-45. Link to SFX for this item
19. Hecht, J. "Frequency combs make their way to the masses." Laser focus world 48.1 (2012): 103-108. Link to SFX for this item
20. Winzer, P. "Energy-Efficient Optical Transport Capacity Scaling Through Spatial Multiplexing." IEEE photonics technology letters 23.13 (2011): 851-853. Link to Full Text for this item Link to SFX for this item
View More...
View Less...
Select All Clear All

Expand list of advanced services Advanced