The 2023 MDPI Annual Report has
been released!
 
20 pages, 577 KiB  
Article
Impact of Ship Noise on Seafarers’ Sleep Disturbances and Daily Activities: An Analysis of Fatigue Increase and Maritime Accident Risk through a Survey
by Seok-Jin Kim, Tae-Youl Jeon and Young-Chan Lee
Appl. Sci. 2024, 14(9), 3757; https://doi.org/10.3390/app14093757 (registering DOI) - 28 Apr 2024
Abstract
This study delves into the impact of ship noise on seafarer well-being, emphasizing fatigue—a significant contributor to maritime accidents due to human error. The investigation, centered around the hypothesis that IMO ship construction standards may not adequately minimize noise levels in seafarer cabins, [...] Read more.
This study delves into the impact of ship noise on seafarer well-being, emphasizing fatigue—a significant contributor to maritime accidents due to human error. The investigation, centered around the hypothesis that IMO ship construction standards may not adequately minimize noise levels in seafarer cabins, seeks to establish whether these levels are sufficient to ensure seafarer security and prevent sleep disturbances. According to current IMO regulations, noise levels are set at 55 dB for vessels under 10,000 gross tonnage and 60 dB for those over 10,000, yet WHO guidelines recommend a maximum of 40 dB in bedrooms to avoid sleep disruption. A comprehensive survey involving 221 cadets demonstrates that 79.6% of participants experience sleep disturbances, work disruptions, and stress due to noise, indicating that the present noise standards are insufficient. This paper argues that reducing noise levels in individual cabins to below 40 dB is critical for enhancing seafarer health and safety and could significantly reduce human error-related maritime accidents. The findings advocate for more stringent noise control measures and regulatory reforms to bridge the knowledge gaps and improve labor protection in the maritime industry. Full article
(This article belongs to the Special Issue Traffic Noise and Vibrations in Public Transportation Systems)
Show Figures

Figure 1

23 pages, 2101 KiB  
Article
A Personalized Collaborative Filtering Recommendation System Based on Bi-Graph Embedding and Causal Reasoning
by Xiaoli Huang, Junjie Wang and Junying Cui
Entropy 2024, 26(5), 371; https://doi.org/10.3390/e26050371 (registering DOI) - 28 Apr 2024
Abstract
The integration of graph embedding technology and collaborative filtering algorithms has shown promise in enhancing the performance of recommendation systems. However, existing integrated recommendation algorithms often suffer from feature bias and lack effectiveness in personalized user recommendation. For instance, users’ historical interactions with [...] Read more.
The integration of graph embedding technology and collaborative filtering algorithms has shown promise in enhancing the performance of recommendation systems. However, existing integrated recommendation algorithms often suffer from feature bias and lack effectiveness in personalized user recommendation. For instance, users’ historical interactions with a certain class of items may inaccurately lead to recommendations of all items within that class, resulting in feature bias. Moreover, accommodating changes in user interests over time poses a significant challenge. This study introduces a novel recommendation model, RCKFM, which addresses these shortcomings by leveraging the CoFM model, TransR graph embedding model, backdoor tuning of causal inference, KL divergence, and the factorization machine model. RCKFM focuses on improving graph embedding technology, adjusting feature bias in embedding models, and achieving personalized recommendations. Specifically, it employs the TransR graph embedding model to handle various relationship types effectively, mitigates feature bias using causal inference techniques, and predicts changes in user interests through KL divergence, thereby enhancing the accuracy of personalized recommendations. Experimental evaluations conducted on publicly available datasets, including “MovieLens-1M” and “Douban dataset” from Kaggle, demonstrate the superior performance of the RCKFM model. The results indicate a significant improvement of between 3.17% and 6.81% in key indicators such as precision, recall, normalized discount cumulative gain, and hit rate in the top-10 recommendation tasks. These findings underscore the efficacy and potential impact of the proposed RCKFM model in advancing recommendation systems. Full article
Show Figures

Figure 1

14 pages, 9686 KiB  
Article
Target Cell Extraction and Spectrum–Effect Relationship Coupled with BP Neural Network Classification for Screening Potential Bioactive Components in Ginseng Extract with a Protective Effect against Myocardial Damage
by Junyi Li, Min Lin, Zexin Xie, Liwenyu Chen, Jin Qi and Boyang Yu
Molecules 2024, 29(9), 2028; https://doi.org/10.3390/molecules29092028 (registering DOI) - 28 Apr 2024
Abstract
Cardiovascular disease has become a common ailment that endangers human health, having garnered widespread attention due to its high prevalence, recurrence rate, and sudden death risk. Ginseng possesses functions such as invigorating vital energy, enhancing vein recovery, promoting body fluid and blood nourishment, [...] Read more.
Cardiovascular disease has become a common ailment that endangers human health, having garnered widespread attention due to its high prevalence, recurrence rate, and sudden death risk. Ginseng possesses functions such as invigorating vital energy, enhancing vein recovery, promoting body fluid and blood nourishment, calming the nerves, and improving cognitive function. It is widely utilized in the treatment of various heart conditions, including palpitations, chest pain, heart failure, and other ailments. Although numerous research reports have investigated the cardiovascular activity of single ginsenoside, there remains a lack of systematic research on the specific components group that predominantly contribute to cardiovascular efficacy in ginseng medicinal materials. In this research, the spectrum–effect relationship, target cell extraction, and BP neural network classification were used to establish a rapid screening system for potential active substances. The results show that red ginseng extract (RGE) can improve the decrease in cell viability and ATP content and inhibit the increase in ROS production and LDH release in OGD-induced H9c2 cells. A total of 70 ginsenosides were identified in RGE using HPLC-Q-TOF-MS/MS analysis. Chromatographic fingerprints were established for 12 batches of RGE by high-performance liquid chromatography (HPLC). A total of 36 common ingredients were found in 12 batches of RGE. The cell viability, ATP, ROS, and LDH of 12 batches RGE were tested to establish gray relationship analysis (GRA) and partial least squares discrimination analysis (PLS-DA). BP neural network classification and target cell extraction were used to narrow down the scope of Spectral efficiency analysis and screen the potential active components. According to the cell experiments, RGE can improve the cell viability and ATP content and reduce the oxidative damage. Then, seven active ingredients, namely, Ginsenoside Rg1, Rg2, Rg3, Rb1, Rd, Re, and Ro, were screened out, and their cardiovascular activity was confirmed in the OGD model. The seven ginsenosides were the main active substances of red ginseng in treating myocardial injury. This study offers a reference for quality control in red ginseng and preparations containing red ginseng for the management of cardiovascular diseases. It also provides ideas for screening active ingredients of the same type of multi-pharmacologically active traditional Chinese medicines. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

13 pages, 5267 KiB  
Article
Design, Fabrication, and Characterization of a Planar Three-Electrode Trigger Switch Based on Flexible Printed Circuit Process
by Pengfei Xue, Peng Xiong, Heng Hu, Tao Wang, Mingyu Li and Qingxuan Zeng
Micromachines 2024, 15(5), 586; https://doi.org/10.3390/mi15050586 (registering DOI) - 28 Apr 2024
Abstract
An exploding foil initiator system (EFIs) is essential in modern weaponry for its safety and reliability. As the main component of EFIs, the performance of the switch is critical to EFIs. In this study, a planar three-electrode trigger switch was designed and fabricated [...] Read more.
An exploding foil initiator system (EFIs) is essential in modern weaponry for its safety and reliability. As the main component of EFIs, the performance of the switch is critical to EFIs. In this study, a planar three-electrode trigger switch was designed and fabricated using the Flexible Printed Circuits (FPC) process. Subsequently, the performance of the FPC switch was tested. The results show that the self-breakdown voltage of the FPC switch is stable. In addition, an FPF switch with a 0.6 mm main electrode gap demonstrated consistency, with delay times below 31.75 ns, and a jitter ranging from 1.7 ns to 10.94 ns at 900 V to 1200 V, evidencing the FPC switches’ reliability and uniform performance across various voltages. Compared to the Micro-Electro-Mechanical Systems (MEMS) switches of similar dimensions, the FPC switches achieved a faster high-current attainment with less inductance, showing a 5% reduction in loop inductance. The repetitive testing results demonstrate that the FPC switch maintains consistent output performance, with stable peak currents, peak current time, and delay time over 50 action cycles, highlighting its repeatability. The FPC switch was assembled with an EFI chip and capacitor into an integrated system, which was subsequently able to successfully detonate HNS-IV at 1000 V/0.22 μF, proving the FPC switch’s potential in low inductance applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

30 pages, 357 KiB  
Article
A New Robust Iterative Scheme Applied in Solving a Fractional Diffusion Model for Oxygen Delivery via a Capillary of Tissues
by Godwin Amechi Okeke, Akanimo Victor Udo, Nadiyah Hussain Alharthi and Rubayyi T. Alqahtani
Mathematics 2024, 12(9), 1339; https://doi.org/10.3390/math12091339 (registering DOI) - 28 Apr 2024
Abstract
In this paper, we constructed a new and robust fixed point iterative scheme called the UO iterative scheme for the approximation of a contraction mapping. The scheme converges strongly to the fixed point of a contraction mapping. A rate of convergence result is [...] Read more.
In this paper, we constructed a new and robust fixed point iterative scheme called the UO iterative scheme for the approximation of a contraction mapping. The scheme converges strongly to the fixed point of a contraction mapping. A rate of convergence result is shown with an example, and our scheme, when compared, converges faster than some existing iterative schemes in the literature. Furthermore, the stability and data dependence results are shown. Our new scheme is applied in the approximation of the solution to the oxygen diffusion model. Finally, our results are applied in the approximation of the solution to the boundary value problems using Green’s functions with an example. Full article
(This article belongs to the Special Issue Variational Inequality and Mathematical Analysis)
11 pages, 3152 KiB  
Article
Photovoltaic Effect of La and Mn Co-Doped BiFeO3 Heterostructure with Charge Transport Layers
by Jiwei Lv and Huanpo Ning
Materials 2024, 17(9), 2072; https://doi.org/10.3390/ma17092072 (registering DOI) - 28 Apr 2024
Abstract
Bismuth ferrite BiFeO3 (BFO)-based ferroelectrics have great potential as inorganic perovskite-like oxides for future solar cells applications due to their unique physical properties. In this work, La and Mn co-doped BFO thin films with compositions Bi0.9La0.1(Fe1−xMn [...] Read more.
Bismuth ferrite BiFeO3 (BFO)-based ferroelectrics have great potential as inorganic perovskite-like oxides for future solar cells applications due to their unique physical properties. In this work, La and Mn co-doped BFO thin films with compositions Bi0.9La0.1(Fe1−xMnx)O3 (x = 0, 0.05, 0.1, 0.15) (denoted as BLF, BLFM5, BLFM10, BLFM15, respectively) were prepared via a sol–gel technique on indium tin oxide (ITO) glass. All the films are monophasic, showing good crystallinity. The optical bandgap Eg was found to decrease monotonously with an increase in the Mn doping amount. Compared with other compositions, the BLFM5 sample exhibits a better crystallinity and less oxygen vacancies as indicated by XRD and XPS measurements, thereby achieving a better J–V performance. Based on BLFM5 as the light absorbing layer, the ITO/ZnO/BLFM5/Pt and ITO/ZnO/BLFM5/NiO/Pt heterostructure devices were designed and characterized. It was found that the introduction of the ZnO layer increases both the open circuit voltage (Voc) and the short circuit current density (Jsc) with Voc = 90.2 mV and Jsc = 6.90 μA/cm2 for the Pt/ BLFM5/ZnO/ITO device. However, the insertion of the NiO layer reduces both Voc and Jsc, which is attributed to the weakened built-in electric field at the NiO/BLFM5 interface. Full article
(This article belongs to the Special Issue Electrical and Optical Properties of Metal Oxide Thin Films)
Show Figures

Figure 1

23 pages, 6356 KiB  
Article
Influence of Organic Matter Thermal Maturity on Rare Earth Element Distribution: A Study of Middle Devonian Black Shales from the Appalachian Basin, USA
by Shailee Bhattacharya, Shikha Sharma, Vikas Agrawal, Michael C. Dix, Giovanni Zanoni, Justin E. Birdwell, Albert S. Wylie, Jr. and Tom Wagner
Energies 2024, 17(9), 2107; https://doi.org/10.3390/en17092107 (registering DOI) - 28 Apr 2024
Abstract
This study focuses on understanding the association of rare earth elements (REE; lanthanides + yttrium + scandium) with organic matter from the Middle Devonian black shales of the Appalachian Basin. Developing a better understanding of the role of organic matter (OM) and thermal [...] Read more.
This study focuses on understanding the association of rare earth elements (REE; lanthanides + yttrium + scandium) with organic matter from the Middle Devonian black shales of the Appalachian Basin. Developing a better understanding of the role of organic matter (OM) and thermal maturity in REE partitioning may help improve current geochemical models of REE enrichment in a wide range of black shales. We studied relationships between whole rock REE content and total organic carbon (TOC) and compared the correlations with a suite of global oil shales that contain TOC as high as 60 wt.%. The sequential leaching of the Appalachian shale samples was conducted to evaluate the REE content associated with carbonates, Fe–Mn oxyhydroxides, sulfides, and organics. Finally, the residue from the leaching experiment was analyzed to assess the mineralogical changes and REE extraction efficiency. Our results show that heavier REE (HREE) have a positive correlation with TOC in our Appalachian core samples. However, data from the global oil shales display an opposite trend. We propose that although TOC controls REE enrichment, thermal maturation likely plays a critical role in HREE partitioning into refractory organic phases, such as pyrobitumen. The REE inventory from a core in the Appalachian Basin shows that (1) the total REE ranges between 180 and 270 ppm and the OM-rich samples tend to contain more REE than the calcareous shales; (2) there is a relatively higher abundance of middle REE (MREE) to HREE than lighter REE (LREE); (3) there is a disproportionate increase in Y and Tb with TOC likely due to the rocks being over-mature; and (4) the REE extraction demonstrates that although the OM has higher HREE concentration, the organic leachates contain more LREE, suggesting it is more challenging to extract HREE from OM than using traditional leaching techniques. Full article
Show Figures

Figure 1

5 pages, 314 KiB  
Editorial
Advances in Numerical Heat Transfer and Fluid Flow
by Artur S. Bartosik
Energies 2024, 17(9), 2108; https://doi.org/10.3390/en17092108 (registering DOI) - 28 Apr 2024
Abstract
Scientists continuously are looking for new methods that allow them to better understand the flow and heat transfer phenomena [...] Full article
(This article belongs to the Special Issue Numerical Heat Transfer and Fluid Flow 2023)
13 pages, 3426 KiB  
Article
Advancements in Fermented Beverage Safety: Isolation and Application of Clavispora lusitaniae Cl-p for Ethyl Carbamate Degradation and Enhanced Flavor Profile
by Yingchun Zhao, Jun Liu, Han Wang, Fayuan Gou, Yiwei He and Lijuan Yang
Microorganisms 2024, 12(5), 882; https://doi.org/10.3390/microorganisms12050882 (registering DOI) - 28 Apr 2024
Abstract
Ethyl carbamate (EC) is a natural by-product in the production of fermented food and alcoholic beverages and is carcinogenic and genotoxic, posing a significant food safety concern. In this study, Clavispora lusitaniae Cl-p with a strong EC degradation ability was isolated from Daqu [...] Read more.
Ethyl carbamate (EC) is a natural by-product in the production of fermented food and alcoholic beverages and is carcinogenic and genotoxic, posing a significant food safety concern. In this study, Clavispora lusitaniae Cl-p with a strong EC degradation ability was isolated from Daqu rich in microorganisms by using EC as the sole nitrogen source. When 2.5 g/L of EC was added to the fermentation medium, the strain decomposed 47.69% of ethyl carbamate after five days of fermentation. It was unexpectedly found that the strain had the ability to produce aroma and ester, and the esterification power reached 30.78 mg/(g·100 h). When the strain was added to rice wine fermentation, compared with the control group, the EC content decreased by 41.82%, and flavor substances such as ethyl acetate and β-phenylethanol were added. The EC degradation rate of the immobilized crude enzyme in the finished yellow rice wine reached 31.01%, and the flavor substances of yellow rice wine were not affected. The strain is expected to be used in the fermented food industry to reduce EC residue and improve the safety of fermented food. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

13 pages, 5164 KiB  
Article
Corrosion Resistance of Fe-Based Amorphous Films Prepared by the Radio Frequency Magnetron Sputter Method
by Tai-Nan Lin, Pin-Hsun Liao, Cheng-Chin Wang, Hung-Bin Lee and Leu-Wen Tsay
Materials 2024, 17(9), 2071; https://doi.org/10.3390/ma17092071 (registering DOI) - 28 Apr 2024
Abstract
Amorphous thin films can be applied to increase the anti-corrosion ability of critical components. Atomized FeCrNiMoCSiB powders were hot-pressed into a disc target for R. F. magnetron sputtering on a 316L substrate to upgrade its corrosion resistance. The XRD spectrum confirmed that the [...] Read more.
Amorphous thin films can be applied to increase the anti-corrosion ability of critical components. Atomized FeCrNiMoCSiB powders were hot-pressed into a disc target for R. F. magnetron sputtering on a 316L substrate to upgrade its corrosion resistance. The XRD spectrum confirmed that the film deposited by R. F. magnetron sputtering was amorphous. The corrosion resistance of the amorphous film was evaluated in a 1 M HCl solution with potentiodynamic polarization tests, and the results were contrasted with those of a high-velocity oxy-fuel (HVOF) coating and 316L, IN 600, and C 276 alloys. The results indicated that the film hardness and elastic modulus, as measured using a nanoindenter, were 11.1 and 182 GPa, respectively. The principal stresses in two normal directions of the amorphous film were about 60 MPa and in tension. The corrosion resistance of the amorphous film was much greater than that of the other samples, which showed a broad passivation region, even in a 1 M HCl solution. Although the amorphous film showed high corrosion resistance, the original pinholes in the film were weak sites to initiate corrosion pits. After polarization tests, large, deep trenches were seen in the corroded 316L substrate; numerous fine patches in the IN 600 alloy and grain boundary corrosion in the C276 alloy were observed. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials, Volume IV)
Show Figures

Figure 1

19 pages, 5128 KiB  
Article
A Comprehensive Description of the Anatomy and Histochemistry of Psychotria capillacea (Müll. Arg.) Standl. and an Investigation into Its Anti-Inflammatory Effects in Mice and Role in Scopolamine-Induced Memory Impairment
by Anelise Samara Nazari Formagio, Wagner Vilegas, Cândida Aparecida Leite Kassuya, Valter Paes De Almeida, Jane Manfron, Elisabete Castelon Konkiewitz, Edward Benjamin Ziff, Janaine Alberto Marangoni Faoro, Jessica Maurino Dos Santos, Ana Julia Cecatto, Maria Helena Sarragiotto and Rosilda Mara Mussury
Pharmaceuticals 2024, 17(5), 564; https://doi.org/10.3390/ph17050564 (registering DOI) - 28 Apr 2024
Abstract
Species of the genus Psychotria are used in popular medicine for pain, inflammatory symptoms, and mental disorders. Psychotria capillacea (Müll. Arg.) Standl. (Rubiaceae) is commonly known as coffee and some scientific studies have demonstrated its therapeutic potential. The goal of this study was [...] Read more.
Species of the genus Psychotria are used in popular medicine for pain, inflammatory symptoms, and mental disorders. Psychotria capillacea (Müll. Arg.) Standl. (Rubiaceae) is commonly known as coffee and some scientific studies have demonstrated its therapeutic potential. The goal of this study was to investigate the anti-inflammatory and neuroprotective effects, and acetylcholinesterase (AChE) inhibitory activity of a methanolic extract obtained from leaves of P. capillacea (MEPC), as well as the micromorphology and histochemistry of the leaves and stems of this plant. In addition, the MEPC was analyzed by UHPLC-MS/MS and the alkaloidal fraction (AF) obtained from the MEPC was tested in a mouse model of inflammation. MEPC contained three indole alkaloids, one sesquiterpene (megastigmane-type) and two terpene lactones. MEPC (3, 30 and 100 mg/kg) and AF (3 and 30 mg/kg) were evaluated in inflammation models and significantly inhibited edema at 2 h and 4 h, mechanical hyperalgesia after 4 h and the response to cold 3 h and 4 h after carrageenan injection. Scopolamine significantly increased the escape latency, and reduced the swimming time and number of crossings in the target quadrant and distance, while MEPC (3, 30 and 100 mg/kg), due to its neuroprotective actions, reversed these effects. AChE activity was significantly decreased in the cerebral cortex (52 ± 3%) and hippocampus (60 ± 3%), after MEPC administration. Moreover, micromorphological and histochemical information was presented, to aid in species identification and quality control of P. capillacea. The results of this study demonstrated that P. capillacea is an anti-inflammatory and antihyperalgesic agent that can treat acute disease and enhance memory functions in mouse models. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

24 pages, 4092 KiB  
Article
The Sensitivity of Polar Mesospheric Clouds to Mesospheric Temperature and Water Vapor
by Jae N. Lee, Dong L. Wu, Brentha Thurairajah, Yuta Hozumi and Takuo Tsuda
Remote Sens. 2024, 16(9), 1563; https://doi.org/10.3390/rs16091563 (registering DOI) - 28 Apr 2024
Abstract
Polar mesospheric cloud (PMC) data obtained from the Aeronomy of Ice in the Mesosphere (AIM)/Cloud Imaging and Particle Size (CIPS) experiment and Himawari-8/Advanced Himawari Imager (AHI) observations are analyzed for multi-year climatology and interannual variations. Linkages between PMCs, mesospheric temperature, and water vapor [...] Read more.
Polar mesospheric cloud (PMC) data obtained from the Aeronomy of Ice in the Mesosphere (AIM)/Cloud Imaging and Particle Size (CIPS) experiment and Himawari-8/Advanced Himawari Imager (AHI) observations are analyzed for multi-year climatology and interannual variations. Linkages between PMCs, mesospheric temperature, and water vapor (H2O) are further investigated with data from the Microwave Limb Sounder (MLS). Our analysis shows that PMC onset date and occurrence rate are strongly dependent on the atmospheric environment, i.e., the underlying seasonal behavior of temperature and water vapor. Upper-mesospheric dehydration by PMCs is evident in the MLS water vapor observations. The spatial patterns of the depleted water vapor correspond to the PMC occurrence region over the Arctic and Antarctic during the days after the summer solstice. The year-to-year variabilities in PMC occurrence rates and onset dates are highly correlated with mesospheric temperature and H2O. They show quasi-quadrennial oscillation (QQO) with 4–5-year periods, particularly in the southern hemisphere (SH). The combined influence of mesospheric cooling and the mesospheric H2O increase provides favorable conditions for PMC formation. The global increase in mesospheric H2O during the last decade may explain the increased PMC occurrence in the northern hemisphere (NH). Although mesospheric temperature and H2O exhibit a strong 11-year variation, little solar cycle signatures are found in the PMC occurrence during 2007–2021. Full article
Show Figures

Figure 1

23 pages, 1956 KiB  
Article
Imagine and Imitate: Cost-Effective Bidding under Partially Observable Price Landscapes
by Xiaotong Luo, Yongjian Chen, Shengda Zhuo, Jie Lu, Ziyang Chen, Lichun Li, Jingyan Tian, Xiaotong Ye and Yin Tang
Big Data Cogn. Comput. 2024, 8(5), 46; https://doi.org/10.3390/bdcc8050046 (registering DOI) - 28 Apr 2024
Abstract
Real-time bidding has become a major means for online advertisement exchange. The goal of a real-time bidding strategy is to maximize the benefits for stakeholders, e.g., click-through rates or conversion rates. However, in practise, the optimal bidding strategy for real-time bidding is constrained [...] Read more.
Real-time bidding has become a major means for online advertisement exchange. The goal of a real-time bidding strategy is to maximize the benefits for stakeholders, e.g., click-through rates or conversion rates. However, in practise, the optimal bidding strategy for real-time bidding is constrained by at least three aspects: cost-effectiveness, the dynamic nature of market prices, and the issue of missing bidding values. To address these challenges, we propose Imagine and Imitate Bidding (IIBidder), which includes Strategy Imitation and Imagination modules, to generate cost-effective bidding strategies under partially observable price landscapes. Experimental results on the iPinYou and YOYI datasets demonstrate that IIBidder reduces investment costs, optimizes bidding strategies, and improves future market price predictions. Full article
(This article belongs to the Special Issue Business Intelligence and Big Data in E-commerce)
Show Figures

Figure 1

21 pages, 632 KiB  
Article
Feasibility Assessment of a Small-Scale Agrivoltaics-Based Desalination Plant with Flywheel Energy Storage—Case Study: Namibia
by József Kádár, Omad (Hassan) Abdelshakour, Tali Zohar and Tareq Abu Hamed
Sustainability 2024, 16(9), 3685; https://doi.org/10.3390/su16093685 (registering DOI) - 28 Apr 2024
Abstract
As climate change and population growth threaten rural communities, especially in regions like Sub-Saharan Africa, rural electrification becomes crucial to addressing water and food security within the energy-water-food nexus. This study explores social innovation in microgrid projects, focusing on integrating micro-agrovoltaics (APV) with [...] Read more.
As climate change and population growth threaten rural communities, especially in regions like Sub-Saharan Africa, rural electrification becomes crucial to addressing water and food security within the energy-water-food nexus. This study explores social innovation in microgrid projects, focusing on integrating micro-agrovoltaics (APV) with flywheel energy storage systems (FSSs) and small-scale water desalination and purification plants. Employing a mixed-methods approach to assess the economic viability of FSS and APV-powered desalination, we believe that social innovation could serve as a significant tool for rural development, requiring collaboration between governments, the private sector, and nonprofit organizations. While FSS technology for microgrids has not been entirely developed, it holds promise as an alternative energy storage solution. Our capital budgeting analysis, presented within the context of social innovation, reveals positive Net Present Values (NPV) and a short payback period over the project’s 20-year lifespan. Full article
(This article belongs to the Special Issue Improving Community Well-Being through Sustainable Interventions)
Show Figures

Figure 1

23 pages, 11489 KiB  
Article
Data-Driven-Based Intelligent Alarm Method of Ultra-Supercritical Thermal Power Units
by Xingfan Zhang, Lanhui Ye, Cheng Zhang and Chun Wei
Processes 2024, 12(5), 889; https://doi.org/10.3390/pr12050889 (registering DOI) - 28 Apr 2024
Abstract
In order to ensure the safe operation of the ultra-supercritical thermal power units (USCTPUs), this paper proposes an intelligent alarm method to enhance the performance of the alarm system. Firstly, addressing the issues of slow response and high missed alarm rate (MAR [...] Read more.
In order to ensure the safe operation of the ultra-supercritical thermal power units (USCTPUs), this paper proposes an intelligent alarm method to enhance the performance of the alarm system. Firstly, addressing the issues of slow response and high missed alarm rate (MAR) in traditional alarm systems, a threshold optimization method is proposed by integrating kernel density estimation (KDE) and convolution optimization algorithm (COA). Based on the traditional approach, the expected detection delay (EDD) indicator is introduced to better evaluate the response speed of the alarm system. By considering the false alarm rate (FAR), and EDD, a threshold optimization objective function is constructed, and the COA is employed to obtain the optimal alarm threshold. Secondly, to address the problem of excessive nuisance alarms, this paper reduces the number of nuisance alarms by introducing an adaptive delay factor into the existing system. Finally, simulation results demonstrate that the proposed method significantly reduces the MAR and EDD, improves the response speed and performance of the alarm system, and effectively reduces the number of nuisance alarms, thereby enhancing the quality of the alarms. Full article
Show Figures

Figure 1

13 pages, 4261 KiB  
Article
Generation of Eroded Nanoplastics from Domestic Wastes and Their Impact on Macrophage Cell Viability and Gene Expression
by Mohammad Saiful Islam, Indrani Gupta, Li Xia, Arjun Pitchai, Jonathan Shannahan and Somenath Mitra
Molecules 2024, 29(9), 2033; https://doi.org/10.3390/molecules29092033 (registering DOI) - 28 Apr 2024
Abstract
This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene [...] Read more.
This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and Poly (Ethylene-co-Methacrylic Acid) (PEMA). The chemical composition of these plastics was confirmed using Raman and FTIR spectroscopy, and they were found to have irregular shapes. The resulting NP particles ranged from 50 to 400 nm in size and demonstrated relative stability when suspended in water. To assess their impact, the study investigated the effects of these NP particulates on cell viability and the expression of genes involved in inflammation and oxidative stress using a macrophage cell line. The findings revealed that all types of NP reduced cell viability in a concentration-dependent manner. Notably, PS, HDPE, and PP induced significant reductions in cell viability at lower concentrations, compared to PEMA and PET. Moreover, exposure to NP led to differential alterations in the expression of inflammatory genes in the macrophage cell line. Overall, this study presents a viable method for producing NP from waste materials that closely resemble real-world NP. Furthermore, the toxicity studies demonstrated distinct cellular responses based on the composition of the NP, shedding light on the potential environmental and health impacts of these particles. Full article
Show Figures

Figure 1

11 pages, 2095 KiB  
Article
Phloem Sap and Wood Carbon Isotope Abundance (δ13C) Varies with Growth and Wood Density of Eucalyptus globulus under Nutrient Deficit and Inform Supplemental Nutrient Application
by Nirmol Kumar Halder, Md. Qumruzzaman Chowdhury, David Fuentes, Malcolm Possell, Benjamin Bradshaw, Sharif A. Mukul and Andrew Merchant
Sustainability 2024, 16(9), 3683; https://doi.org/10.3390/su16093683 (registering DOI) - 28 Apr 2024
Abstract
Eucalyptus globulus, commonly known as blue gum or southern blue gum, is a tall, evergreen tree endemic to southeastern Australia. E. globulus is grown extensively in plantations to improve the sustainability of timber and fibre production across Australia. Sustainable forest management [...] Read more.
Eucalyptus globulus, commonly known as blue gum or southern blue gum, is a tall, evergreen tree endemic to southeastern Australia. E. globulus is grown extensively in plantations to improve the sustainability of timber and fibre production across Australia. Sustainable forest management practices necessitate the consideration of ‘off-site’ carbon and ecological footprints. Pursuing optimal supplemental nutrient application and maximum growth rates is therefore critical to the establishment of a sustainable timber and fibre production industry. Biological indicators that can predict growth responses are therefore of extreme value. We investigated the carbon isotope abundance of wood cellulose (δ13Ccel) in E. globulus to determine potential relationships with the carbon isotope abundance of phloem sap (δ13Cphl) where the trees were subjected to different level of nutrient availability. This study also sought to determine the effect of nutrient additions on the growth of the E. globulus and to quantify the relationship between the volumetric growth of wood and δ13Ccel. Phloem sap and wood cores were collected from trees within study plots which were subjected to seven nutrient treatments over a two-year period in a monoculture E. globulus plantation in South Australia. Phloem sap was collected using the razor blade technique and wood cores were collected using a stem borer. The carbon isotope abundance (δ13C) of phloem sap and wood grown in the radial direction of the stem were determined. The basic and dry densities of wood were determined, and their relationships with phloem and wood δ13C were established. The δ13Cphl was significantly correlated with δ13Ccel. The relationship between δ13Ccel and the wood density of the respective wood sections was significant but did not consistently show the same pattern. There was no significant variation in basic density observed along the radial direction of the stem wood of the short-rotation E. globulus trees. A positive correlation was observed between δ13Ccel and the wood basic density, but the relationship was not consistent along the radial direction of the stem. However, positive correlations were observed between δ13Ccel and the air-dry density of respective wood sections. The relationship between phloem and wood δ13C and the relationship between δ13C and wood density along the radial direction of the stem needs to be considered while monitoring forest growth under nutrient- and water-limited conditions. Full article
(This article belongs to the Special Issue Forest Growth Monitoring and Sustainable Management)
Show Figures

Figure 1

17 pages, 7191 KiB  
Article
Phenotypic Characteristics and Occurrence Basis of Leaf Necrotic Spots in Response of Weedy Rice to Imazethapyr
by Zeyu Zhang, Xianyu Wang, Jianing Zang, Dongsun Lee, Qian Zhu and Lijuan Chen
Plants 2024, 13(9), 1218; https://doi.org/10.3390/plants13091218 (registering DOI) - 28 Apr 2024
Abstract
Weedy rice is the most challenging weed species to remove in rice production. We found a novel phenotype of seedling leaves which rapidly generates necrotic spots in response to imidazolinone herbicides in weedy rice, but its influencing factors and formation basis are still [...] Read more.
Weedy rice is the most challenging weed species to remove in rice production. We found a novel phenotype of seedling leaves which rapidly generates necrotic spots in response to imidazolinone herbicides in weedy rice, but its influencing factors and formation basis are still unknown. In this study, we used the leaf necrotic spot-producing type of weedy rice as the material. First, leaf necrotic spots were defined as physiological and vacuole-mediated cell necrosis by microscopic examination. The imazethapyr concentration was positively correlated with the degree of necrotic spots occurring, while the action site was in accordance with necrosis using herbicide stability tests combined with fluorescence parameters. Furthermore, transcriptome analysis revealed significant differences in the gene expression of endoplasmic reticulum stress and the lipid metabolism membrane structure damage pathway during necrosis, as confirmed by transmission electron microscopy. The light–temperature test also showed that high temperature and intense light could promote the appearance of necrotic spots. These experimental results are helpful in clarifying the process and basis of imazethapyr in inducing the rapid generation of necrotic spots in rice leaves and providing new insight into understanding the mechanism of response to imidazolinone herbicides and the control of weedy rice. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Rice and Rice Breeding)
Show Figures

Figure 1

17 pages, 3107 KiB  
Article
Genetic Diversity and Detection of Respiratory Viruses Excluding SARS-CoV-2 during the COVID-19 Pandemic in Gabon, 2020–2021
by Georgelin Nguema Ondo, Yuri Ushijima, Haruka Abe, Saïdou Mahmoudou, Rodrigue Bikangui, Anne Marie Nkoma, Marien Juliet Veraldy Magossou Mbadinga, Ayong More, Maradona Daouda Agbanrin, Christelle M. Pemba, Romuald Beh Mba, Adegnika Ayola Akim, Bertrand Lell and Jiro Yasuda
Viruses 2024, 16(5), 698; https://doi.org/10.3390/v16050698 (registering DOI) - 28 Apr 2024
Abstract
Acute respiratory infections are a major global burden in resource-limited countries, including countries in Africa. Although COVID-19 has been well studied since the pandemic emerged in Gabon, Central Africa, less attention has been paid to other respiratory viral diseases, and very little data [...] Read more.
Acute respiratory infections are a major global burden in resource-limited countries, including countries in Africa. Although COVID-19 has been well studied since the pandemic emerged in Gabon, Central Africa, less attention has been paid to other respiratory viral diseases, and very little data are available. Herein, we provide the first data on the genetic diversity and detection of 18 major respiratory viruses in Gabon during the COVID-19 pandemic. Of 582 nasopharyngeal swab specimens collected from March 2020 to July 2021, which were SARS-CoV-2 negative, 156 were positive (26%) for the following viruses: enterovirus (20.3%), human rhinovirus (HRV) (4.6%), human coronavirus OC43 (1.2%), human adenovirus (0.9%), human metapneumovirus (hMPV) (0.5%), influenza A virus (IAV) (0.3%), and human parainfluenza viruses (0.5%). To determine the genetic diversity and transmission route of the viruses, phylogenetic analyses were performed using genome sequences of the detected viruses. The IAV strain detected in this study was genetically similar to strains isolated in the USA, whereas the hMPV strain belonging to the A2b subtype formed a cluster with Kenyan strains. This study provides the first complete genomic sequences of HRV, IAV, and hMPV detected in Gabon, and provides insight into the circulation of respiratory viruses in the country. Full article
Show Figures

Figure 1

12 pages, 6745 KiB  
Article
Cytological, Phytohormone, and Transcriptome Analyses Provide Insights into Persimmon Fruit Shape Formation (Diospyros kaki Thunb.)
by Huawei Li, Yujing Suo, Hui Li, Peng Sun, Weijuan Han and Jianmin Fu
Int. J. Mol. Sci. 2024, 25(9), 4812; https://doi.org/10.3390/ijms25094812 (registering DOI) - 28 Apr 2024
Abstract
Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this [...] Read more.
Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this study, the mechanism of fruit shape formation was studied by cytological observations, phytohormone assays, and transcriptome analysis using the long fruit and flat fruit produced by ‘Yaoxianwuhua’ hermaphroditic flowers. The results showed that stage 2–3 (June 11–June 25) was the critical period for persimmon fruit shape formation. Persimmon fruit shape is determined by cell number in the transverse direction and cell length in the longitudinal direction. High IAA, GA4, ZT, and BR levels may promote long fruit formation by promoting cell elongation in the longitudinal direction, and high GA3 and ABA levels may be more conducive to flat fruit formation by increasing the cell number in the transverse direction and inhibiting cell elongation in the longitudinal direction, respectively. Thirty-two DEGs related to phytohormone biosynthesis and signaling pathways and nine DEGs related to cell division and cell expansion may be involved in the persimmon fruit shape formation process. These results provide valuable information for regulatory mechanism research on persimmon fruit formation. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

14 pages, 267 KiB  
Review
The Role of Surgery in Pleural Mesothelioma
by Moshe Lapidot and Martin Sattler
Cancers 2024, 16(9), 1719; https://doi.org/10.3390/cancers16091719 (registering DOI) - 28 Apr 2024
Abstract
Surgery plays a central role in the diagnosis, staging, and management of pleural mesothelioma. Achieving an accurate diagnosis through surgical intervention and identifying the specific histologic subtype is crucial for determining the appropriate course of treatment. The histologic subtype guides decisions regarding the [...] Read more.
Surgery plays a central role in the diagnosis, staging, and management of pleural mesothelioma. Achieving an accurate diagnosis through surgical intervention and identifying the specific histologic subtype is crucial for determining the appropriate course of treatment. The histologic subtype guides decisions regarding the use of chemotherapy, immunotherapy, or multimodality treatment. The goal of surgery as part of multimodality treatment is to accomplish macroscopic complete resection with the eradication of grossly visible and palpable disease. Over the past two decades, many medical centers worldwide have shifted from performing extra-pleural pneumonectomy (EPP) to pleurectomy decortication (PD). This transition is motivated by the lower rates of short-term mortality and morbidity associated with PD and similar or even better long-term survival outcomes, compared to EPP. This review aims to outline the role of surgery in diagnosing, staging, and treating patients with pleural mesothelioma. Full article
(This article belongs to the Special Issue Mesothelioma—from Diagnosis to Treatment)
25 pages, 9759 KiB  
Article
Study on Transportation Green Efficiency and Spatial Correlation in the Yangtze River Economic Belt
by Yangzhou Li, Cheng Li and Dongni Feng
Sustainability 2024, 16(9), 3686; https://doi.org/10.3390/su16093686 (registering DOI) - 28 Apr 2024
Abstract
The Yangtze River Economic Belt (YREB), a crucial transportation corridor spanning China’s east and west and linking coastal and inland regions, is not only pivotal in the nation’s strategic development but also drives regional economic and social progress through its transportation industry. Despite [...] Read more.
The Yangtze River Economic Belt (YREB), a crucial transportation corridor spanning China’s east and west and linking coastal and inland regions, is not only pivotal in the nation’s strategic development but also drives regional economic and social progress through its transportation industry. Despite rapid growth, the industry faces challenges such as low efficiency, resource supply–demand imbalances, and environmental issues. To advance green and sustainable progress, this study establishes a regional transportation green efficiency evaluation system. Using principal component analysis (PCA) to refine input data, the undesirable super-SBM model quantitatively assesses green transportation efficiency (GTE) in YREB provinces and cities, revealing regional disparities. The study also explores spatial correlations and distribution characteristics of GTE. Results indicate that ① YREB’s GTE shows a U-shaped trend, with significant differences between upper, middle, and lower reaches, being stronger in the east and weaker in the west (lower > middle > upper reaches); ② GTE exhibits spatial correlation in YREB regions, with clear clustering; and ③ cold and hot spots of GTE in the middle reaches are relatively stable, with upstream areas generally cold or sub-cold, and hot spots mainly downstream. Full article
Show Figures

Figure 1

22 pages, 6870 KiB  
Article
Impact of a Whole-Food, High-Soluble Fiber Diet on the Gut–Muscle Axis in Aged Mice
by Roger A. Fielding and Michael S. Lustgarten
Nutrients 2024, 16(9), 1323; https://doi.org/10.3390/nu16091323 (registering DOI) - 28 Apr 2024
Abstract
Previous studies have identified a role for the gut microbiome and its metabolic products, short-chain fatty acids (SCFAs), in the maintenance of muscle mass and physical function (i.e., the gut–muscle axis), but interventions aimed at positively impacting the gut–muscle axis during aging are [...] Read more.
Previous studies have identified a role for the gut microbiome and its metabolic products, short-chain fatty acids (SCFAs), in the maintenance of muscle mass and physical function (i.e., the gut–muscle axis), but interventions aimed at positively impacting the gut–muscle axis during aging are sparse. Gut bacteria ferment soluble fiber into SCFAs, and accordingly, to evaluate the impact of a high-soluble-fiber diet (HSFD) on the gut–muscle axis, we fed a whole-food, 3×-higher-soluble fiber-containing diet (relative to standard chow) to aged (98 weeks) C57BL/6J mice for 10 weeks. The HSFD significantly altered gut bacterial community structure and composition, but plasma SCFAs were not different, and a positive impact on muscle-related measures (when normalized to body weight) was not identified. However, when evaluating sex differences between dietary groups, female (but not male) HSFD-fed mice had significant increases for SCFAs, the quadriceps/body weight (BW) ratio, and treadmill work performance (distance run × BW), which suggests that an HSFD can positively impact the gut–muscle axis. In contrast, consistent effects in both male and female HSFD-fed mice included weight and fat loss, which suggests a positive role for an HSFD on the gut–adipose axis in aged mice. Full article
(This article belongs to the Special Issue Impact of Dietary Bioactives on Muscle Mass, Strength and Performance)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop