Pole mass of the W boson at two-loop order in the pure MS¯ scheme

Stephen P. Martin
Phys. Rev. D 91, 114003 – Published 3 June 2015

Abstract

I provide a calculation at full two-loop order of the complex pole squared mass of the W boson in the Standard Model in the pure MS¯ renormalization scheme, with Goldstone boson mass effects resummed. This approach is an alternative to earlier ones that use on-shell or hybrid renormalization schemes. The renormalization scale dependence of the real and imaginary parts of the resulting pole mass is studied. Both deviate by about ±4MeV from their median values as the renormalization scale is varied from 50 to 200 GeV, but the theory error is likely larger. A surprising feature of this scheme is that the two-loop QCD correction has a larger scale dependence, but a smaller magnitude, than the two-loop non-QCD correction, unless the renormalization scale is chosen very far from the top-quark mass.

  • Figure
  • Figure
  • Figure
  • Received 29 March 2015

DOI:https://doi.org/10.1103/PhysRevD.91.114003

© 2015 American Physical Society

Authors & Affiliations

Stephen P. Martin

  • Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA and Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 11 — 1 June 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×